

ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MANAGEMENT COMPLIANCE REPORT

EPA 40 CFR Part 503 Year 2020

10844 Ellis Avenue Fountain Valley, CA 92708 714,962,2411

February 11, 2021

Hope Smythe, Executive Officer California Regional Water Quality Control Board, Santa Ana Region 3737 Main Street, Suite 500 Riverside, CA 92501-3348

SUBJECT: Orange County Sanitation District Annual Compliance Report

Enclosed please find the Orange County Sanitation District (OC San) Biosolids Management Compliance Report as required under the 40 CFR Part 503 regulations, Arizona Administrative Code Article 10, and the National Pollution Discharge Elimination System (NPDES) Permit No. CA0110604, Order No. R8-2012-0035.

OC San has uploaded this report into the EPA biosolids electronic reporting database and submitted e-mail copies to state and local regulators. A copy of OC San's EPA electronic report is included as Appendix D.

Certification Statement

The following certifications satisfy procedural requirements as listed in section V.B.5 of the Orange County Sanitation District NPDES Permit No. CA0110604 and 40 CFR part 503, section 503.17 for the submittal of the attached compliance report for calendar vear 2020.

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or comments regarding this packet of information or require any additional data, please contact Deirdre Bingman at (714) 593-7459. I can be reached at (714) 593-7450.

Wiborg,

Lan

Digitally signed by Wiborg, Lan au-OMEDEndUserSupport, ou-Al Users au-OCSDUsers, ou-Environmental Sen ou-610 - Administration, cn-Wiborg, Lan, email-LW6borgEOCSD.COM Oste: 2021.02.11 17:44:16:08.0W

Lan C. Wiborg, MPH **Director of Environmental Services**

LW/DEB:pe

H:\dept\es\630\Compliance\Biosolids\Compliance_Reports\Annual_Reports\40CFR503_2020\02_Cover_Letters_and_ Regulatory Submittals\Cover Letter-RWQCB SAR.docx

Enclosures

Our Mission: To protect public health and the environment by providing effective wastewater collection, treatment, and recycling. Serving: Anaheim **Brea** Ruena Park Cypress Fountain Valley Fullerton Garden Grove Huntington Beach Irvine La Habra La Palma Los Alamitos Newport Beach Orange Placentia Santa Ana Seal Beach Stanton Tustin

Villa Park

County of Orange

Costa Mesa Sanitary District

Midway City Sanitary District

Irvine Ranch Water District

Yorba Linda Water District

10844 Ellis Avenue Fountain Valley, CA 92708 714.962.2411

February 11, 2021

Sondra Francis Arizona Department of Environmental Quality Water Permits Section 1110 West Washington Street, 5415-B-3 Phoenix, AZ 85007

SUBJECT: Orange County Sanitation District Annual Compliance Report

Enclosed please find the Orange County Sanitation District (OC San) Biosolids Management Compliance Report as required under the 40 CFR Part 503 regulations, Arizona Administrative Code Article 10, and the National Pollution Discharge Elimination System (NPDES) Permit No. CA0110604, Order No. R8-2012-0035.

OC San has uploaded this report into EPA biosolids electronic reporting database and submitted e-mail copies to state and local regulators. A copy of OC San's Arizona biosolids annual reporting form is included as Appendix E, and the EPA electronic report is included as Appendix D.

Certification Statement

The following certifications satisfy procedural requirements as listed in Arizona Administrative Code Article 10 under section R18-9-1013 for the submittal of the attached EPA 40 CFR Part 503 Compliance Report for calendar year 2020.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

If you have any questions or comments regarding this packet of information or require any additional data, please contact Deirdre Bingman at (714) 593-7459. I can be reached at (714) 593-7450.

Wiborg, Lan Unic di-coni di-Indidecci, unic CSER fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSER fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-Indidecci, unic CSE fully signed by Wiborg. Lan Die di-coni di-coni di-coni di-coni di CSE fully signed by Wiborg. Lan Die di-coni di CSE fully signed by Wiborg. Lan Die di-coni di CSE fully signed by Wiborg. Lan Die di CSE fully signed by Wiborg. Lan Die di-coni di CSE fully signed by Wiborg. Lan Die di CSE fully signe email::LWiborg@OffiD.COM Date: 2021.02.11 17:43:22 -08'00'

Lan C. Wiborg, MPH **Director of Environmental Services**

LW/DEB:pe

H:\dept\es\630\Compliance\Biosolids\Compliance_Reports\Annual_Reports\40CFR503_2020\02_Cover_Letters_an d_Regulatory_Submittals\Cover_Letter-ADEQ.docx

Enclosures

Serving:

Anaheim

Brea

Buena Park

Cypress

Fountain Valley

Fullerton

Garden Grove

Huntington Beach

Irvine

La Habra

La Palma

Los Alamitos

Newport Beach

Orange

Placentia

Santa Ana

Seal Beach

Stanton

Tustin

Villa Park

County of Orange

Costa Mesa Sanitary District

Midway City Sanitary District

Irvine Ranch Water District

Yorba Linda Water District

Our Mission: To protect public health and the environment by providing effective wastewater collection, treatment, and recycling.

BIOSOLIDS MANAGEMENT COMPLIANCE REPORT

Introduction	1
Organization and Function	1
Accomplishments	1
Treatment Plants and Program Updates	2
Biosolids Management	4
Summary of Pollutants	5
Determination of Hazardousness	
Biosolids Management System	

APPENDIX A

Table 1: OCSD Biosolids Wet and Dry Tonnage Distribution, Plant No. 1Table 2: OCSD Biosolids Wet and Dry Tonnage Distribution, Plant No. 2Biosolids Monthly Compliance Reports, January – December 2020

APPENDIX B

OCSD's Resource Protection Division, Pretreatment Program's Annual Report, FY 2019-2020, Solids Management Program, Chapter 8

APPENDIX C

Summary of Priority Pollutants and Trace Constituents Analysis in Biosolids

APPENDIX D

EPA Biosolids Annual Report Electronic Form, Plant No. 1 EPA Biosolids Annual Report Electronic Form, Plant No. 2

APPENDIX E

Arizona Department of Environmental Quality Biosolids Annual Report Form

APPENDIX F

Biosolids Program History

Introduction Organization and Function Accomplishments Treatment Plants and Program Updates Biosolids Management Summary of Pollutants Determination of Hazardousness Biosolids Management System

Introduction

The Orange County Sanitation District (OC San) treats and manages its biosolids, the nutrient-rich, organic matter recovered through the treatment of wastewater. OC San's Biosolids Program consists of processes to ensure solids are treated onsite and used offsite (recycled) in accordance with all local, state, and federal regulations and best management practices.

OC San treats and manages its biosolids in accordance with OC San's National Pollutant Discharge Elimination System (NPDES) Permit No. CA0110604 (NPDES), Arizona Administrative Code Title 18, Ch. 9, Article 10 (R18-9), and EPA Code of Federal Regulations Title 40 Part 503 (503).

The following sections summarize OC San's activities and performances for the compliance-reporting period of January 1 to December 31, 2020.

Organization and Function

OC San is a public agency that provides wastewater collection, treatment, and recycling services for approximately 2.6 million people in central and northwest Orange County, California. OC San is a special district that is governed by a Board of Directors consisting of 25 board members appointed from 20 cities, 4 special districts, and 1 representative from the Orange County Board of Supervisors. OC San has two plants that treat wastewater from residential, commercial, and industrial sources.

- During this budgetary fiscal year (2019-2020) OC San treated an average daily sewage influent flow of **188 million gallons per day (MGD).**
- During this last calendar year (2020) OC San produced **206,896 wet tons of biosolids (47,106 dry metric tons)**, which equates to an average of **567 wet tons per day of biosolids.** No digester cleaning material was managed this year.

Accomplishments

Despite the global pandemic, OC San continued the work at hand and has several accomplishments to highlight this year including:

- Recycled 100% of OC San's biosolids.
- A pandemic contingency hauling plan was added into the Biosolids Section of the Integrated Emergency Response Plan in the case that COVID-19 impacted haulers.
- OC San issued a request for proposals for digester cleaning maintenance in June 2020 and awarded the multi-year contract to American Processing Group (APG) in October 2020. APG began cleaning digesters in January 2021.
- Food Waste Treatment Policy Initiative: As part of the implementation of the 2017 Biosolids Master Plan, 2019 Strategic Plan, and as part of the General Manager's

Work Plan goal for Fiscal Year 2020-21, OC San is conducting a market assessment of available food waste feedstock for co-digestion and securing bids to construct P2-124 "Interim Food Waste Receiving Facility" at Plant No. 2. Several prospective municipal solid waste haulers have expressed interest in providing food waste feedstock, which OC San is currently evaluating. Bid opening for P2-124 was in January 2021, and bid selection is in progress. This project is designed to receive approximately 150 wet tons of pre-processed food waste to be co-digested in OC San's anaerobic digesters at Plant No. 2. The added organic feedstock will account for about a 10% increase of biogas production that will be used to generate electricity.

- Biosolids Management Policy Initiative Biosolids Thermal Conversion: As directed by the 2019 Strategic Plan, a request for information (RFI) was issued for biosolids thermal conversion technologies (BTC) in April 2020. This process continues into 2021 with contract negotiations to add a BTC process that may potentially serve as a PFAS-reduction demonstration facility as a biosolids management option.
- OC San's Research Program continues to stay abreast of advanced technologies. Participation in the International Technology Advisory Group (iTAG) is an integral part of OC San's Research Program. The iTAG screens and evaluates potential beneficial technologies for the wastewater industry. Annually, OC San hosts the iTAG and invites other wastewater treatment agencies to learn of the most promising technologies at which time agencies may choose to pilot. OC San continues to stay current in biosolids and energy recovery technologies through this process.
- OC San's Awards and Honors (<u>www.ocsd.com/about-us/awards-and-honors</u>) webpage features many 2020 awards, including:
 - National Association of Clean Water Agencies (NACWA) Platinum Award and Gold Excellence in Management Recognition,
 - Utility of the Future Today Award from the Water Environment Federation for OC San efforts in energy generation and recovery, and
 - Grand prize from the American Academy of Environmental Engineers and Scientists for the Climate Resiliency and Adaptation Plan.

Treatment Plants and Program Updates

Reclamation Plant No. 1, located in the city of Fountain Valley, treated an average of 119 MGD of wastewater. Treatment Plant No. 2, located in the City of Huntington Beach, treated an average of 69 MGD of wastewater during the most recent fiscal year.

The Plant No. 1 diversion of primary sludge from Plant No. 1 to Plant No. 2 via the interplant sludge line effectively ceased by March 2020 with the new thickening centrifuges providing additional capacity for solids treatment at Plant No. 1.

Dewatered biosolids averaged 24% total solids at Plant No. 1 and 27% total solids at Plant No. 2. The 2019 commissioning of dewatering centrifuges at both plants reduced biosolids production by about 35% (2018 vs. 2020). More detailed data, including

monthly averages, annual totals and analytical results, can be viewed in Figure 1 and Table 2 below, as well as in Appendices A, B, C, and D.

The Irvine Ranch Water District (IRWD) historically discharged its untreated solids (sludge) to OC San. IRWD is completing commissioning its new solids treatment facility and have been ramping down the volume of solids discharged to OC San as the new facilities are coming online. OC San saw a reduction in biosolids at the end of the year and anticipate an additional incremental reduction in early 2021 when the facilities are fully commissioned.

OC San's biosolids are digested for at least 15 days at a minimum of 95 degrees Fahrenheit, with a volatile solids destruction of at least 38%. OC San's anaerobically digested biosolids meet compliance with the "Class B Pathogen Reduction" and "Vector Attraction Reduction" definition for "Class B" biosolids as defined in 40 CFR Part 503.32(b)(3) (PSRP 3) and 503.33(b)(1). In addition, Tule Ranch-AgTech's standard operating procedure includes biosolids incorporation within six (6) hours which meets 40 CFR Part 503.33(b)(10) requirement and is a valuable redundancy in rare events when OC San experiences challenges meeting the Vector Attraction Reduction standard.

See Accomplishments section for an update on the new digester cleaning contract.

Biosolids Management

For this reporting period, biosolids produced at OC San's two treatment facilities were managed by the contractors listed below in Table 1.

Table 1- Biosolids Mana	gement Contractors
Synagro - Nursery Products PO Box 1439 Helendale, CA 92342 Contact: Venny Vasquez Phone: (760) 265-5210 Email: vvasquez@SYNAGRO.com	Synagro – South Kern Compost Manufacturing Facility PO Box 265 Taft, CA 93268 Contact: Rob Rankin Phone: (661) 765-2200 Email: rrankin@SYNAGRO.com
Liberty Compost 12421 Holloway Rd. Lost Hills, CA 93249 Contact: Patrick McCarthy Phone: (661) 797-2914 Email: patrickmccarthy@mccarthyfarms.com	Synagro – Arizona Soils 5615 S. 91st Avenue Tolleson, AZ 85353 Contact: Craig Geyer Phone: (623) 936-6328 Email: CGeyer@SYNAGRO.com
Tule Ranch / Ag-Tech 4324 E. Ashlan Ave. Fresno, CA 93726 Contact: Shaen Magan Phone: (559) 970-9432 Email: kurt@westexp.com	Inland Empire Regional Composting Authority 12645 6th Street Rancho Cucamonga, CA 91739 Contact: Jeff Ziegenbein Phone: (909) 993-1981 Email: jziegenbein@ieua.org

These contractors provide OC San with biosolids management diversification and reliability, and are therefore important partners to OC San. These contractors submit their annual compliance reports directly to EPA, in accordance with OC San's NPDES permit requirements. For this reporting period, OC San's biosolids were beneficially reused as illustrated in Table 2. More detailed breakdowns are available in Appendices A and D.

Quantity Generated	Plant No. 1	Plant No. 2	Total	Relative %
Synagro - Nusery Products CA - (compost) (wet tons)	75,410	0	75,410	36%
Synagro - Nusery Products CA - (compost) (dry metric tons)	16,708	0	16,708	
Synagro - South Kern - compost (wet tons)	3,120	0	3,120	1.5%
Synagro - South Kern - compost (dry metric tons)	698	0	698	
Synagro - AZ Soils - compost (wet tons)	880	700	1,580	0.8%
Synagro - AZ Soils - compost (dry metric tons)	194	151	345	
Liberty Compost CA (wet tons)	33,398	6,772	40,170	19%
Liberty Compost CA (dry metric tons)	7,401	1,597	8,998	
Inland Empire Regional Composting (wet tons)	0	7,304	7,304	3.5%
Inland Empire Regional Composting (dry metric tons)	0	1,722	1,722	
Tule Ranch AZ (land application) (wet tons)	24,801	54,512	79,313	38%
Tule Ranch AZ (land application) (dry metric tons)	5,498	13,137	18,635	
Total Wet Tons	137,608	69,288	206,896	100%
Total Dry Metric Tons	30,499	16,607	47,106	

Table 2- Biosolids Managed Tonnage Distribution

Summary of Pollutants

OC San's Biosolids Monthly Compliance Reports (Appendix A) compare the concentration limits of the pollutants listed in 40 CFR 503 to OC San's average biosolids concentrations for each plant. The average concentrations of all pollutants in OC San's biosolids are typically an order of magnitude below the conservative *Table-1 Ceiling Limits* and *Table 3 Exceptional Quality Limits* found in 40 CFR Part 503, which were based on an extensive health risk assessment to ensure that biosolids are safe for recycle to build healthy soil.

Since 1976, OC San's Pretreatment Program has been effective in lowering the average mass of metals discharged to the marine environment by 99% and the total mass of metals in the influent sewage by 84%, thereby ensuring OC San's biosolids can be recycled to farm fields with low metals concentrations. Furthermore, OC San's influent wastewater meets drinking water standards for metals. Appendix B contains the biosolids chapter excerpt of the OC San Pretreatment Program Annual Report (ocsd.com/PreTreatAnnual, Chapter 8) that includes graphs of metals in OC San's biosolids.

In accordance with OC San's NPDES permit, biosolids are also tested semi-annually for all pollutants listed under Section 307(a) of the Clean Water Act. Appendix C contains the summary of the priority pollutants analyzed in the plants' biosolids.

Determination of Hazardousness

OC San's biosolids' pollutant concentrations are significantly below the state and federal maximum contaminant concentrations for determining a hazardous waste. See OC San's biosolids monitoring data in Appendix C, Summary of Priority Pollutants and Trace Constituents Analysis.

Legal Definitions

OC San's 2012 Ocean Discharge NPDES permit requires OC San to test its biosolids annually for hazardousness in accordance with 40 CFR Part 261. Hazardous waste is also defined under the provisions of California Code of Regulations, Title 22, Chapter 11, Article 5, and Arizona Revised Statutes, Title 49, Chapter 5, Article 2.

Determination Summary

OC San's biosolids are determined to be non-hazardous based on the following evaluation:

- OC San's biosolids are not ignitable, corrosive, reactive, nor toxic in accordance with the federal regulatory definitions in 40 CFR Part 261.
- OC San performs semi-annual testing of an extensive list of organic and inorganic compounds to verify the continued non-hazardousness of our biosolids.
- When the results are non-detectable, OC San enters the method detection limit in the evaluation spreadsheet that compares the data to regulatory limits.

Biosolids Management System

OC San continues to utilize a biosolids management system approach to effectively administer its biosolids program. The following sections highlight OC San's continued commitment to the biosolids management system.

Communications

OC San has continued transparent communications during this reporting period. OC San shares timely updates including biosolids news, annual compliance reports, biosolids videos, updated OC San resources such as the biosolids allocation map and Biosolids Contractor Requirements document. In 2020 the following items were posted or updated on OC San's biosolids website:

- Monthly compliance reports and data (ocsd.com/nani),
- Annual compliance reports (ocsd.com/503), and
- Biosolids allocation map (<u>ocsd.com/map</u>).

Contractor Oversight Program

OC San has continued our strong contractor oversight program:

 No Notice of Violations (NOVs) were issued for OC San's active biosolids contractors,

- Performed 9 contractor site inspections,
- No contractor issues,
- No inspection findings,
- No odor complaints, and
- Performed 55 hauling inspections, which reached 38 out of 39 regular drivers (97%) this year. There are 27 active drivers (69%) who are currently on OC San's "Honor Roll" for excellence in their truck cleanliness, knowledge of biosolids and emergency protocol by successfully passing three consecutive hauler inspections.

Goals and Targets

The 2019 Strategic Plan is a guiding document that provides a framework that directs our work. Every two years, the Strategic Plan is reviewed, updated, and submitted for approval by the Board of Directors. Two initiatives are related to biosolids (Food Waste Treatment Policy and Biosolids Management Policy) and updates are provided in the Accomplishments section. The Strategic plan is available on the OC San Strategic Planning website (https://www.ocsd.com/services/strategic-planning).

Biosolids Program Policy

The Biosolids Program Policy, originally adopted in 1999 and amended several times over the years, is a policy committing the agency to support biosolids beneficial reuse (organics recycling). The most recent commitments, OC San Resolution 13-03 (www.ocsd.com/policy), and OC San's performance relative to these commitments are reported below.

Table 3 – Polic	y Performance								
Policy Commitment	2020 Performance								
 Commit to sustainable biosolids program. 	OC San has demonstrated effective pretreatment, water and solids treatment operations, compliance, capital improvements, technology research and planning, and biosolids contractor oversight programs.								
Support the recycling of biosolids.	See the Accomplishments at the beginning of this report.								
 Strive to balance financial, environmental, and societal considerations when making biosolids decisions. 	OC San weighs these considerations and watches for issues that would alter the balance on a daily basis. See Ten Tenets reporting table below and the most current allocation map(<u>www.ocsd.com/map</u>), which demonstrate how OC San balances these considerations.								
 Utilize a biosolids management system to maintain a sustainable and publicly supported biosolids program. 	OC San continues to maintain our biosolids management system as outlined in this section.								
 Diversify portfolio of offsite biosolids management options with multiple biosolids contractors, markets, facilities, and maintaining fail-safe 	See Table 2 for breakdown of our active biosolids management options. See Table 4 for the Ten Tenets.								

Table 3 – Polic	y Performance
Policy Commitment	2020 Performance
back-up capacity of at least 100% of its daily biosolids production.	
5. Research and implement ways to reduce the volume of biosolids at the treatment plants to minimize the need for offsite management.	As mentioned in the "Treatment Plants and Program Updates" section above, OC San's production of biosolids has reduced by 35% since the centrifuges fully commissioned in 2019 (2018 vs. 2020). OC San's Research program actively seeks
	opportunities for process area improvements, including solids (see Accomplishments section).
	OC San is continuing to monitor the Supercritical Water Oxidation technology (<u>www.scfi.eu</u>) and the progress towards a feasible pilot plant.
 Support continuing research of biosolids benefits and potential safety concerns. 	In July 2020, the California State Water Resource Control Board issued OC San and most other treatment plants an order to sample our wastewater and biosolids for a list of polyfluoroalkyl constituents (abbreviated as PFAS). The quarterly sampling will start in the first quarter of 2021 and will conclude with the Summer 2021 sampling event. The State regulators will use this data to determine presence and absence of the constituents that will help in future policy or regulatory planning. In addition, OC San is supporting several PFAS research projects. OC San has access to the Northwest Biosolids' library (www.nwbiosolids.org). The library contains references to over 2,600 biosolids-related research articles references. Northwest Biosolids sends a monthly theme-based, relevant summary of research to its members, so we can easily digest pertinent scientific information and better communicate with interested parties. Northwest Biosolids also has a free monthly e-Bulletin for non-members. See Research Program in Accomplishments.
7. Demonstrate the benefits of biosolids compost by using it at the District's facilities.	OC San maintains compost piles at each plant. This compost is available to our employees and our landscape contractor to demonstrate the benefits of compost. OC San encourages employees to share their compost use photos.
	OC San continues long-term monitoring of our composted biosolids demonstration planter that contains drought-tolerant and native species.

Ten Tenets of OC San's Biosolids Management Plan Read more on OC San's Ten Tenets and the Biosolids Master Plan at <u>ocsd.com/bmp</u>.

Table 4 – Ten Tenets d	of Biosolids Management Performance
Tenet Commitment	2020 Performance
 Allocate up to 50 percent of biosolids per biosolids contractor. 	Each contractor received less than 50% of OC San's biosolids. See Table 2 for relative tonnage distribution this year. See OC San's current map of where OC San's biosolids are allocated at <u>ocsd.com/map</u> .
2. Allocate up to 50 percent of biosolids to each geographic end use market.	 Sixty two percent (62%) of OC San's biosolids were turned into compost at five (5) regional facilities. Combined, these facilities distributed 221,561 tons of composted biosolids in the following 11 geographic markets (almost doubling counties from 2019): 28.7% to San Bernardino County (7% decrease over last year), 24.9% to Riverside County (8% decrease over last year), 13.8% to Kern County (2% decrease over last year), 11.8% to Los Angeles County (3% increase over last year), 5.3% to Orange County (4% increase over last year), 5.3% to San Diego County (4% increase over last year), 2.7% to Maricopa County (4% increase over last year), 2.2% to Fresno County (2% increase over last year), 2.9% to Fresno County (1% increase over last year), 0.9% Tulare County (1% increase over last year), 0.2% Clark County, Nevada (0.2% increase over last year). The remaining 38% of OC San's biosolids were used to raise crops, producing 7,975 tons of sudan, oats, sorghum, and alfalfa for use in Arizona, California, and New Mexico.
3. Maintain at least three (3) different biosolids management facilities at any time.	OC San maintained five (5) different management facilities. See Table 2 for relative tonnage distribution this year. See OC San's current map of where OC San's biosolids are allocated at <u>ocsd.com/map</u> .
 Maintain at least two (2) different biosolids management practices at any time. 	OC San maintained two (2) different management practices, composting and land application (direct farming of feed crops with biosolids). See Table 2 for relative tonnage distribution this year. See OC San's current map of where OC San's biosolids are allocated at <u>ocsd.com/map</u> .
5. Maintain at least two (2) different hauling companies within the biosolids management portfolio.	OC San and its biosolids management contractors utilized three (3) different hauling companies (GIC, Tule Ranch/Western Express, and Denali Water Solutions).

	Table 4 – Ten Tenets o	of Biosolids Management Performance
	Tenet Commitment	2020 Performance
6.	Maintain at least 200 percent (2 times daily production) contingency capacity at end use sites.	OC San maintained biosolids management site contingency capacity of at least 1250% (12.5 times daily production) .
7.	Maintain 20 percent (1.2 times daily production) fail- safe hauling capacity.	OC San maintained a range of 42-92% (1.4-1.9 times daily production) fail-safe hauling capacity.
8.	Track and encourage development of emerging markets and/or end uses for biosolids, especially for local end use options.	The 2019 Strategic Plan developed by the Board of Directors and staff defines the strategic initiatives to be pursued by OC San and provides a basis for long-term financial, capital, and operational planning. The Biosolids Management Policy initiative in the document includes commitments to educate and advocate with the local, state, and federal agencies to assure biosolids will continue to be safely and legally used as a soil amendment and monitor and research constituents of emerging concern such as PFAS and microplastics that may impact biosolids. See the Accomplishments section for an update on OC San's efforts this year on the Food Waste Treatment Policy and Biosolids Management Policy.
9.	Allocate up to 10 percent of total biosolids production for participation in emerging markets, including participation in pilot or demonstration projects.	See the Accomplishments section for an update on OC San's efforts this year on the Biosolids Management Policy Initiative, which included a 2020 RFI for biosolids thermal conversion facilities.
10	Explore partnerships with area soil blenders to allow incorporation of OC San's Class A product into local markets.	OC San is following the work being done by San Francisco Public Utilities Commission on their research and development of their temperature-phase anaerobically digested biosolids soil blend product. In particular, the blend and product distribution to local markets. OC San's efforts will follow suit at the appropriate time since OC San facilities are expected to be commissioned in about 2030.

APPENDIX A

Table 1: OCSD Biosolids Wet and Dry Tonnage Distribution, Plant No. 1Table 2: OCSD Biosolids Wet and Dry Tonnage Distribution, Plant No. 2Biosolids Monthly Compliance Reports, January – December 2020

Та	ble 1	: 00	SD E		olids					•		ibutio	on	
				Ree	clamati	on Plar	nt No. 1	, Foun	tain Va	lley, CA	۱			
Biosolids Generated	Jan	Feb	Mar	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Annual Average	
Biosolids Total Solids (%)	24	25	24	23	25	25	25	24	24	25	24	25	24	
Management Locations	Jan	Feb	Mar	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Tot	al
Synagro - Nusery Products CA - compost (wet tons)	7,149	6,959	6,775	5,674	6,523	6,674	6,555	6,520	6,474	5,832	4,897	5,376	75,410	
Synagro - Nusery Products CA - compost (dry metric tons)	1,556	1,578	1,475	1,184	1,479	1,513	1,486	1,419	1,409	1,322	1,066	1,219	16,708	
Synagro - South Kern - compost (wet tons)	0	0	0	0	0	0	0	0	0	756	1,057	1,306	3,120	
Synagro - South Kern - compost (dry metric tons)	0	0	0	0	0	0	0	0	0	172	230	296	698	
Synagro - AZ Soils - compost (wet tons)	0	0	24	277	479	100	0	0	0	0	0	0	880	
Synagro - AZ Soils - compost (dry metric tons)	0	0	5	58	109	23	0	0	0	0	0	0	194	Total
Liberty Compost CA (wet tons)	2,674	2,425	2,326	2,655	3,059	2,731	2,679	3,133	2,759	2,835	2,760	3,360	33,398	Wet Tons
Liberty Compost CA (dry metric tons)	582	550	506	554	694	619	607	682	601	643	601	762	7,401	137,608
Inland Empire Regional Composting (wet tons)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Inland Empire Regional Composting (dry metric tons)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tule Ranch AZ - land application (wet tons)	2,253	2,304	1,919	1,016	1,711	1,296	1,818	3,129	2,362	2,434	2,175	2,384	24,801	
Tule Ranch AZ - land application (dry metric tons)	490	522	418	212	388	294	412	681	514	552	473	540	5,498	
Total Wet Tons	12,076	11,688	11,044	9,622	11,772	10,801	11,053	12,783	11,595	11,859	10,889	12,426	137,608	
Total Dry Metric Tons	2,629	2,650	2,404	2,007	2,669	2,449	2,506	2,783	2,524	2,689	2,370	2,818	30,499	
Digester Cleanings	Jan	Feb	Mar	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total	
Digester Cleaning Total Solids Percent (average)	oan	100	Mai	Арти	May	oune	ouly	Aug	000	001	Nov	Dee	Total	
Synagro AZ Soils (compost) (wet tons) (digester cleanings only)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Synagro, AZ Soils (compost) (dry metric tons) (digester cleanings only)	0	0	0	0	0	0	0	0	0	0	0	0	0.0	
Synagro Nursery Products (compost) (wet tons) (digester cleanings only)	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Synagro, Nursery Products (compost) (dry metric tons) (digester cleanings	0	0	0	0	0	0	0	0	0	0	0	0	0.0	Dry Tons
Digester Cleaning Total Wet Tons	0	0	0	0	0	0	0	0	0	0	0	0	0	30,499
Total Dry Metric Tons	0	0	0	0	0	0	0	0	0	0	0	0	0.0	
Total Wet Tons (Biosolids plus Digester Cleanings)	12,076	11,688	11,044	9,622	11,772	10,801	11,053	12,783	11,595	11,859	10,889	12,426	137,608	
Total Dry Metric Tons (Biosolids plus Digester Cleanings)	2,629	2,650	2,404	2,007	2,669	2,449	2,506	2,783	2,524	2,689	2,370	2,818	30,499	

Та	able	2: 00					and	-		-		ibuti	on	
Biosolids Generated	_						nt No. 2	•				_		
	Jan 26	Feb 28	Mar 27	April 23	May 26	June 27	July 28	Aug 27	Sep 27	Oct 27	Nov 26	Dec 27	Annual Average 27	
Biosolids Total Solids (%) Management Locations	Jan	Feb	Mar	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Tot	al
Synagro - Nusery Products CA - compost (wet tons)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Synagro - Nusery Products CA - compost (dry metric tons)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Synagro - South Kern - compost (wet tons)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Synagro - South Kern - (dry metric tons)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Synagro- AZ Soils-compost (wet tons)	0	0	24	526	150	0	0	0	0	0	0	0	700	
Synagro - AZ Soils-compost (dry metric tons)	0	0	6	110	35	0	0	0	0	0	0	0	151	Total
Liberty Compost CA (wet tons)	811	1,703	1,241	25	330	457	606	379	611	304	178	127	6,772	Wet Tons
Liberty Compost CA (dry metric tons)	191	402	293	6	78	108	143	89	144	72	42	30	1,597	69,288
Inland Empire Regional Composting (wet tons)	688	490	420	0	297	742	767	791	765	790	812	741	7,304	
Inland Empire Regional Composting (dry metric tons)	162	115	99	0	70	175	181	186	180	186	192	175	1,722	
Tule Ranch AZ - land application (wet tons)	5,050	5,198	4,985	4,716	5,211	5,264	4,228	3,742	4,019	4,200	3,722	4,176	54,512	
Tule Ranch AZ - land application (dry metric tons)	1,191	1,320	1,221	984	1,229	1,289	1,074	916	984	1,029	878	1,023	13,137	
Biosolids Total Wet Tons	6,550	7,390	6,670	5,267	5,988	6,463	5,602	4,912	5,395	5,294	4,713	5,044	69,288	
Total Dry Metric Tons	1,545	1,837	1,618	1,099	1,412	1,572	1,398	1,192	1,309	1,287	1,111	1,227	16,607	
Digester Cleanings	Jan	Feb	Mar	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total	
Digester Cleaning Total Solids Percent (average)				- F										
Synagro AZ Soils (compost) (wet tons) (digester cleanings only)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Synagro, AZ Soils (compost) (dry metric tons) (digester cleanings only)	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Synagro Nursery Products (compost) (wet tons) (digester cleanings only)	0	0	0	0	0	0	0	0	0	0	0	0	0	Dry Tons
Synagro, Nursery Products (compost) (dry metric tons) (digester cleanings only)	0	0	0	0	0	0	0	0	0	0	0	0	0	16,607
Digester Cleaning Total Wet Tons	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Dry Metric Tons	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Wet Tons (Biosolids plus Digester Cleanings)	6,550	7,390	6,670	5,267	5,988	6,463	5,602	4,912	5,395	5,294	4,713	5,044	69,288	
Total Dry Metric Tons (Biosolids plus Digester Cleanings)	1,545	1,837	1,618	1,099	1,412	1,572	1,398	1,192	1,309	1,287	1,111	1,227	16,607	

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA Monitoring Period: January 1- 31, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 01/21/20, 01/28/20

	Mercury (mg/kg dry)	Arsenic (mg/kg dry)		Chromium (mg/kg dry)		Lead (mg/kg dry)	Molybdenum (mg/kg dry)	Nickel (mg/kg dry)	Selenium (mg/kg dry)	(mg/kg	Ammonia Nitrogen (mg/kg dry)	Nitrogen	-	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	1.2	9.2	1.8	51	550	14	16	38	12	820	8,100	44,000	52,000	8.1	23	59
Plant 1 Avg	1.2	8.8	1.7 DNQ	50	530	13	16	37	12	800	6,600	44,000	52,000		24	
Plant 2 Max/Min*	0.98	12	2.6	45	470	28	16	36	12	750	6,800	45,000	52,000	7.9	25	54
Plant 2 Avg	0.51 DNQ	12	2.6	45	450	24	16	36	12	740	5,000	45,000	52,000		26	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	29	27	29	Out of Service	29	30	30	30	30	26	26
Minimum Temperature (Min 95 °F)	97	98	98	Out of Service	97	98	99	98	98	98	98

OCSD Plant 2	System Summary	•	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. I	Dig. J	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	26	26	26	26	Out of Service	Out of Service	27	Out of Service	Out of Service	26	26	27	Out of Service	27	27	26	Out of Service	27
Minimum Temperature (Min 95 °F)	98	100	99	100	Out of Service	Out of Service	99	Out of Service	Out of Service	100	100	99	Out of Service	98	100	98	Out of Service	100

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: January 1- 31, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager

jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager

rcoss@ocsd.com (714) 593-7508

Cindy Vellucci

Red V-Ex

Cindy Vellucci

Deirdre Bingman

Rachel Van Exel

Peter Park

Lan Wiborg

(Min 15 days)** Minimum

Temperature

(Min 95 °F)

99

100

100

99

Biosolids Monthly Compliance Report

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: February 1- 29, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 02/18/2020, 02/25/2020

_	Mercury (mg/kg dry)	Arsenic)(mg/kg dry)	Cadmium (mg/kg dry					Molybdenu (mg/kg dry			elenium ıg/kg dry)(Zinc (mg/kg dry)	Ammonia Nitrogen (mg/kg dry	Nitroger	n Nitro	gen	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.87	<6.2	2.3	49	5	40	12	18	42	2	<3.8	710	9,300	45,000	54,0	000	7.9	24	52
Plant 1 Avg	0.75	<6.2	2.1 DNQ	45	5	10	12	16	39)	<3.8	680	8,700	44,000	53,0	000		25	
Plant 2 Max/Min*	0.95	<5.6	2.4	43	4	60	17	17	48	3	<3.4	<mark>660</mark>	8,800	44,000	53,0	000	8.0	27	64
Plant 2 Avg	0.79	<5.6	2.2	38	4	10	16	15	40)	<3.4	<mark>610</mark>	7,800	44,000	52,0	000		28	
Table 1 (Max/Min)*	57	75	85	3000	43	800	840	75	42	0	100	7500	N/A	N/A	N/.	A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	15	500	300	N/A	42	0	100	2800	N/A	N/A	N/.	A	N/A	N/A	N/A
OCSD Plant		System Summary		Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 1	4 Dig. 1	5 Dig. 16	ì						
Minimum Mea Residence Tin (Min 15 days)*	ne	27	24		Dut of ervice	33	28	28	28	28	24	24							
Minimum Temperature (Min 95 °F)		98	99		Dut of ervice	99	99	99	99	99	99	98							
OCSD Plant	- 1	System Summary	Dig. C	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. I	Dig.	J Dig. I	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mea Residence Tir		25	24	24	24	Out of Service	Out of Service	24	Out of Service	Out o Servic		24	24	Out of Service	24	24	26	Out of Service	24

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

Service Service

Out of

Out of

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

99

Out of

Service Service

Out of

99

100

100

Out of

Service

99

99

99

100

Out of

Service

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: February 1- 29, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager

jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager

rcoss@ocsd.com (714) 593-7508

Cindy Vellucci	DB	Rachel Van Exel Rachel Van Exel (Apr 21, 2020)	Peter Park. Peter Park (Apr 21, 2020)	Lan C. Wiborg Lan C. Wiborg (Apr 22, 2020)
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Peter Park	Lan Wiborg

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: March 1- 31, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 03/17/2020, 03/24/2020

	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)			Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.70	<1.4	1.9	50	620	13	17	40	<.99	830	8,000	47,000	55,000	7.9	24	61
Plant 1 Avg	0.67	<1.4	1.9	46	600	13	17	36	<.99	750	8,000	45,000	53,000		24	
Plant 2 Max/Min*	0.67	<1.3	3.1	46	540	19	20	46	<.91	780	5,500	49,000	54,000	8.0	26	57
Plant 2 Avg	0.58	<1.3	2.9	44	540	18	19	43	< <u>.</u> 91	750	5,300	48,000	53,000		27	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	25	25	25	Out of Service	25	25	25	25	25	25	25
Minimum Temperature (Min 95 °F)	99	99	104	Out of Service	99	99	99	99	99	99	99

OCSD Plant 2	System Summary	Dig. C	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. I	Dig. J	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	25	25	25	25		Out of Service			Out of Service	25	25	26	Out of Service	25	25	25	Out of Service	25
Minimum Temperature (Min 95 °F)	98	99	99	99		Out of Service			Out of Service		98	100	Out of Service	99	99	100	Out of Service	100

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: March 1- 31, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager

jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager

rcoss@ocsd.com (714) 593-7508

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: April 1- 30, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 04/21/20, 04/28/20

	Mercury (mg/kg dry)			Chromium (mg/kg dry)		Lead (mg/kg dry)	Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)		Nitrogen	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	1.8	<1.6	2.1	50	560	14	19	40	<1.2	790	9,300	60,000	69,000	8.2	20	64
Plant 1 Avg	1.2	<1.6	2.0	50	550	14	19	39	<1.2	790	8,600	51,000	59,000		23	
Plant 2 Max/Min*	0.62	<1.7	4.0	55	630	21	27	52	<1.2	960	7,300	66,000	73,000	8.1	19	62
Plant 2 Avg	0.52	<1.7	3.4	49	550	20	24	46	<1.2	890	6,300	57,000	63,000		23	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	28	28	28	Out of Service	27	28	28	28	28	27	28
Minimum Temperature (Min 95 °F)	98	98	98	Out of Service	99	99	98	99	99	99	99

OCSD Plant 2	System Summary	_	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. I	Dig. J	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	29	29	29	29	Out of Service		31	Out of Service	Out of Service	29	29	31	Out of Service	29	29	29	Out of Service	31
Minimum Temperature (Min 95 °F)	98	99	100	100	Out of Service		100		Out of Service	99	98	98	Out of Service	100	100	99	Out of Service	99

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: April 1- 30, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager

jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager

rcoss@ocsd.com (714) 593-7508

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: May 1- 31, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 05/19/20, 05/20/20,05/26/20

	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)		•	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.52	<1.3	1.9	55	520	15	18	38	<0.94	840	8,000	47,000	55,000	8.1	25	57
Plant 1 Avg	0.51	<1.3	1.9	51	510	14	18	37	<0.94	810	8,000	46,000	54,000		25	
Plant 2 Max/Min*	0.60	<1.3	2.7	45	470	22	20	32	<0.93	850	5,300	51,000	56,000	8.1	25	63
Plant 2 Avg	0.60	<1.3	2.5	42	420	19	18	29	<0.93	740	5,200	48,000	53,000		26	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	25	25	25	Out of Service	24	25	25	25	25	25	25
Minimum Temperature (Min 95 °F)	98	99	98	Out of Service	99	98	99	99	99	99	99

OCSD Plant 2	System Summary	-	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. I	Dig. J	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	26	26	30	26		Out of Service			Out of Service	28	26	27	Out of Service	26	25	26	Out of Service	27
Minimum Temperature (Min 95 °F)	99	99	102	100		Out of Service	99	Out of Service	Out of Service	99	99	100	Out of Service	99	100	100	Out of Service	99

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: May 1- 31, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jost		Healty	le	
	<u>ears@ocsd.com</u> 14) 593-7081	Labo	Coss ro pratory, Monitoring & pliance Manager	coss@ocsd.com (714) 593-7508
<u>Cindy Vellucci</u> drogy velicci (Al 20, 2220 ovr.52 POT)	DB	fedel V-Exl	Peter Park Peter Park (Jul 13, 2020 18:49 PDT)	Lan C. Wiborg Lan C. Wiborg (Jul 14, 2020 07:11 PDT)
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Peter Park	Lan Wiborg

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: June 1- 30, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 06/02/20, 06/09/20

_	Mercury (mg/kg dry)			Chromium (mg/kg dry)		(mg/kg dry)	Molybden um (mg/kg dry)	Nickel (mg/kg dry)	Selenium (mg/kg dry)			Nitrogen	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.49	<1.3	1.9	59	530	15	20	42	<0.95	840	8,300	43,000	51,000	8.0	24	54
Plant 1 Avg	0.48	<1.3	1.7	55	490	14	18	36	< 0 .95	770	8,000	42,000	50,000		25	
Plant 2 Max/Min*	0.46	<1.3	2.9	63	490	23	22	36	<0.92	850	5,300	44,000	49,000	8.1	25	67
Plant 2 Avg	0.41	<1.3	2.7	57	460	22	21	33	<0.92	790	5,000	43,000	48,000		27	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	24	25	25	Out of Service	24	24	25	25	25	24	24
Minimum Temperature (Min 95 °F)	98	98	98	Out of Service	98	98	98	98	98	98	98

OCSD Plant 2	System Summary	-	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. I	Dig. J	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	26	25	Out of Service	25	Out of Service	22	21		Out of Service	29	26	21	Out of Service	25	25	25	Out of Service	21
Minimum Temperature (Min 95 °F)	99	100	Out of Service	100	Out of Service	101	100		Out of Service	100	99	99	Out of Service	99	100	102	Out of Service	100

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3).

** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: June 1- 30, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

þ	Joh
0	01

Jim Spears Operations Manager

jspears@ocsd.com (714) 593-7081

Valle -

Ron Coss Laboratory, Monitoring & Compliance Manager

rcoss@ocsd.com (714) 593-7508

Cindy Volucci Cindy Volucci (Mag 10, 2020 12:54 P0T)	DBy-		Reza Sobhani Reza Sobhani (Aug 11, 2020 10:28 PDT)	Lan C. Wiborg
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Reza Sobhani	Lan Wiborg

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: July 1- 31, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 07/21/2020, 07/28/2020

_	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)		Organic Nitrogen (mg/kg dry)	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.54	<1.3	1.7	51	540	15	20	37	<0.95	820	8,400	47,000	55,000	8.2	25	64
Plant 1 Avg	0.49	<1.3	1.6	51	540	15	20	35	<0.95	790	8,200	46,000	54,000		25	
Plant 2 Max/Min*	0.49	<1.2	2.4	66	540	18	21	33	<0.87	770	4,700	46,000	51,000	8.2	27	71
Plant 2 Avg	0.47	<1.2	2.4	65	520	18	20	32	<0.87	770	4,700	45,000	50,000		28	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	25	26	26	Out of Service	24	25	25	25	26	25	25
Minimum Temperature (Min 95 °F)	97	98	98	Out of Service	98	98	98	98	98	97	98

OCSD Plant 2	System Summary		Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. I	Dig. J	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	26	28	Out of Service	29	Out of Service	22	22	Out of Service	Out of Service	28	28	22	Out of Service	28	28	28	Out of Service	23
Minimum Temperature (Min 95 °F)	97	100	Out of Service	97	Out of Service	101	100	Out of Service	Out of Service		100	99	Out of Service	99	100	100	Out of Service	101

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3).

** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: July 1- 31, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager rcoss@ocsd.com (714) 593-7508

Cindy Vellucci Cindy Vellucci (Sep 17, 2020 13:17 PDT)	Deirdre Bingma Sep 17, 2020 13:53 PDT)	Redul V-Excl	Reza Sobhani Rezestobani (Sep 23, 2020 12:46 PDT)	Lan C. Wiborg Lan C. Wiborg (Sep 23, 2020 13:57 PDT)
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Reza Sobhani	Lan Wiborg

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: August 1- 31, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 08/18/20, 08/25/20

	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)		Organic Nitrogen (mg/kg dry)	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	1.1	<1.4	1.7	50	570	13	21	38	<1.0	830	9,400	42,000	51,000	7.9	23	50
Plant 1 Avg	0.99	<1.4	1.6	50	470	13	21	38	<1.0	810	8,900	41,000	49,000		24	
Plant 2 Max/Min*	0.62	<1.2	2.3	66	500	17	21	29	<0.87	740	6,800	37,000	43,000	7.9	27	72
Plant 2 Avg	0.52	<1.2	2.3	64	490	17	21	28	<0.87	740	6,600	37,000	43,000		27	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	22	23	22	Out of Service	21	22	22	22	22	22	22
Minimum Temperature (Min 95 °F)	98	98	98	Out of Service	98	98	98	98	98	98	98

OCSD Plant 2	System Summary	-	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	30	32	Out of Service	32	Out of Service	25	25	32	32	25	Out of Service	32	32	32	Out of Service	25
Minimum Temperature (Min 95 °F)	97	99	Out of Service	99	Out of Service	100	97	100	100	99	Out of Service	100	100	100	Out of Service	100

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the

reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3).

** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: August 1- 31, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim S	pears
Jim Spear	s (Dec 16, 2020 10:11 PST)

Jim Spears Operations Manager jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager rcoss@ocsd.com (714) 593-7508

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: September 1- 30, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): 09/15/20, 09/22/20

	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)		Nitrogen	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.66	<1.4	1.6	52	670	3.4	20	35	<1.0	900	10,000	54,000	64,000	7.9	23	62
Plant 1 Avg	0.57	<1.4	1.5	51	<mark>660</mark>	3.3	20	35	<1.0	880	10,000	50,000	60,000		24	
Plant 2 Max/Min*	0.74	<1.2	2.1	56	510	6.7	21	34	<0.89	780	8,400	45,000	53,000	8.0	26	<mark>6</mark> 9
Plant 2 Avg	0.68	<1.2	2.1	55	500	6.5	20	33	<0.89	770	7,500	42,000	50,000		27	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	23	24	24	Out of Service	22	23	23	24	23	23	23
Minimum Temperature (Min 95 °F)	97	98	98	Out of Service	97	98	97	98	97	97	98

OCSD Plant 2	System Summary	-	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	28	28	Out of Service	29	Out of Service	24	24	28	29	25	Out of Service	28	28	28	Out of Service	26
Minimum Temperature (Min 95 °F)	99	100	Out of Service	103	Out of Service	100	101	100	100	99	Out of Service	100	101	99	Out of Service	99

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: September 1- 30, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager jspears@ocsd.com (714) 593-7081

Hall E

Ron Coss Laboratory, Monitoring & Compliance Manager rcoss@ocsd.com (714) 593-7508

Cindy Vellucci Cindy Vellucci (Dec 15, 2020 16:04 PST)	Deirdre Bingma Dec 16, 2020 07:07 PST)	Richel V-Excl	<i>Reza Sobhani</i> Reza Sobhani (Dec 17, 2020 15:35 PST)	Lan C. Wiborg .an C. Wiborg (Jan 8, 2021 13:42 PST)
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Reza Sobhani	Lan Wiborg

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: October 1-31, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): <u>10/20/20, 10/27/20</u>

	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)	Ammonia Nitrogen (mg/kg dry)	Nitrogen	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.78	8.9 DNQ	1.2	43	560	2.9	18	39	6.8	770	9,600	52,000	62,000	7.9	24	64
Plant 1 Avg	0.60	8.8 DNQ	1.2	43	550	2.2 DNQ	18	36	6.3	750	9,400	49,000	59,000		25	
Plant 2 Max/Min*	0.53	14	2.1	47	530	6.2	20	27	6.9	720	6,700	50,000	56,000	7.8	27	<mark>6</mark> 5
Plant 2 Avg	0.47	14	2.0	47	500	6.2	20	26	6.9	710	6,600	47,000	54,000		27	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	27	27	27	Out of Service	26	27	27	27	27	27	27
Minimum Temperature (Min 95 °F)	97	97	98	Out of Service	98	97	98	97	98	98	98

OCSD Plant 2	System Summary		Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	30	30	Out of Service	30	Out of Service	29	29	30	30	29	Out of Service	29	29	29	Out of Service	30
Minimum Temperature (Min 95 °F)	99	100	Out of Service	102	Out of Service	100	99	100	100	100	Out of Service	100	101	100	Out of Service	100

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL). * Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: October 1-31, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager

rcoss@ocsd.com (714) 593-7508

Cindy Vellucci Cindy Vellucci (Dec 31, 2020 14:14 PST)	Deirdre Bingma Dec 31, 2020 15:08 PST)	Redel V-Exl	<i>Roza Sobhani</i> Reza Sobhani (Jan 4, 2021 13:08 PST)	Lan C. Wiborg Lan C. Wiborg (Jan 4, 2021 13:29 PST)
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Reza Sobhani	Lan Wiborg

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: November 1-30, 2020

This notice and necessary information demonstrates compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): <u>11/03/20, 11/17/20</u>

	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)			Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.69	11	1.2	44	540	2.7	18	34	13	840	8,700	51,000	58,000	7.8	23	66
Plant 1 Avg	0.66	10.5 DNQ	1.1	44	530	2.5	18	34	9.7	800	7,800	49,000	57,000		24	
Plant 2 Max/Min*	0.84	20	2.3	51	520	5.9	22	31	7.7	850	6,500	51,000	57,000	7.9	22	69
Plant 2 Avg	0.60	19	2.2	47	490	5.4	21	30	6.2	770	6,300	45,000	51,000		26	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	27	28	28	Out of Service	27	28	27	28	27	27	27
Minimum Temperature (Min 95 °F)	97	97	98	Out of Service	98	98	98	98	98	97	98

OCSD Plant 2	System Summary	-	Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	30	31	Out of Service	31	Out of Service	30	30	31	31	30	Out of Service	30	30	30	Out of Service	30
Minimum Temperature (Min 95 °F)	97	97	Out of Service	98	Out of Service	100	98	100	98	99	Out of Service	98	100	100	Out of Service	100

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: November 1-30, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears (Jan 6, 2021 08:04 PST)

Jim Spears Operations Manager jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager rcoss@ocsd.com (714) 593-7508

Cindy Vellucci Cindy Vellucci (Jan 5, 2021 11:25 PST)	Deirdre Bingma (Jan 5, 2021 13:06 PST)	Redel V-Exl	<u>Reza Sobhani</u> Rezestohani (Jan 5, 2021 14:55 PST)	Lan C. Wiborg Lan C. Wiborg (Jan 5, 2021 14:56 PST)
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Reza Sobhani	Lan Wiborg

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: December 1-31, 2020

This notice and necessary information demonstrate compliance with requirements of the Code of Federal Regulations Title 40 Part 503 and the Arizona Administrative Code Title 18, Chapter 9, Article 10 for land application pollutant concentrations, Class B pathogen reduction via anaerobic digestion (40CFR 503.32(b)(3)(A)(3), AAC R18-9-1006(E)(5)), and vector attraction reduction via volatile solids reduction (40CFR 503.33(b)(1), AAC R18-9-1010(A)(1)).

Sampling date(s): <u>12/01/20, 12/08/20</u>

	Mercury (mg/kg dry)			Chromium (mg/kg dry)			Molybdenum (mg/kg dry)		Selenium (mg/kg dry)	(mg/kg dry)		Nitrogen	Total Nitrogen (mg/kg dry)	рН	Total Solids (%)	VSR (%)
Plant 1 Max/Min*	0.69	12	1.6	48	530	18	18	47	8.5	810	11,000	46,000	57,000	8.0	23	62
Plant 1 Avg	0.62	11 DNQ	1.6	46	530	11	18	44	8.5	810	11,000	44,000	55,000		25	
Plant 2 Max/Min*	0.49	19	2.6	52	490	6.9	22	33	8.4	800	8,600	40,000	49,000	8.0	25	73
Plant 2 Avg	0.44	17	2.5	46	450	5.3	20	30	8.4	730	7,500	40,000	47,000		27	
Table 1 (Max/Min)*	57	75	85	3000	4300	840	75	420	100	7500	N/A	N/A	N/A	6.5	15	38
Table 3 (Avg)	17	41	39	N/A	1500	300	N/A	420	100	2800	N/A	N/A	N/A	N/A	N/A	N/A

OCSD Plant 1	System Summary	Dig. 7	Dig. 8	Dig. 9	Dig. 10	Dig. 11	Dig. 12	Dig. 13	Dig. 14	Dig. 15	Dig. 16
Minimum Mean Cell Residence Time (Min 15 days)**	27	27	27	Out of Service	26	27	27	27	27	26	26
Minimum Temperature (Min 95 °F)	97	98	99	Out of Service	99	98	97	98	97	98	97

OCSD Plant 2	System Summary		Dig. D	Dig. E	Dig. F	Dig. G	Dig. H	Dig. L	Dig. M	Dig. N	Dig. O	Dig. P	Dig. Q	Dig. R	Dig. S	Dig. T
Minimum Mean Cell Residence Time (Min 15 days)**	31	31	Out of Service	32	Out of Service	31	31	31	32	31	Out of Service		31	31	Out of Service	31
Minimum Temperature (Min 95 °F)	98	98	Out of Service	98	Out of Service	99	98	100	100	99	Out of Service	98	100	101	Out of Service	100

DNQ (Detected, Not Quantified) represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

* Maximum values are reported for metals and nitrogen parameters; minimum values are reported for pH, volatile solids reduction (VSR) and total solids. Analysis of pH is conducted to comply with AAC R18-9-1007(A)(1). The limit for total solids applies only if biosolids are sent to a California landfill, per CCR Title 27 Section 20220(c)(3). ** MCRT based on a 15-Day Rolling Average.

Facility Name: Orange County Sanitation District Reclamation Plant #1, Fountain Valley, CA and Treatment Plant #2, Huntington Beach, CA

Monitoring Period: December 1-31, 2020

Certifications:

NPDES permit: I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

503 Class B: I certify, under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirement in 503.33(b)(1) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Arizona Class B: I certify, under penalty of law, that the pollutant analyses and the description of pathogen treatment and vector attraction reduction activities have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Jim Spears Operations Manager jspears@ocsd.com (714) 593-7081

Ron Coss Laboratory, Monitoring & Compliance Manager

rcoss@ocsd.com (714) 593-7508

<u>Cindy Vellucci</u> Cindy Vellucci (Jen 12, 2021 10:57 PST)	Deirdre Bingm Jan 12, 2021 14:01 PST)	Robel V-Excl	Reza Sobhani Reza Sobhani (Jan 12, 2021 15:16 PST)	Lan C. Wiborg Lan C. Wiborg (Jan 12, 2021 15:24 PST)
Cindy Vellucci	Deirdre Bingman	Rachel Van Exel	Reza Sobhani	Lan Wiborg

APPENDIX B

OCSD's Resource Protection Division, Pretreatment Program's Annual Report, FY 2019-2020, Solids Management Program, Chapter 8

Chapter 8

SOLIDS MANAGEMENT PROGRAM

Introduction Biosolids Quality

SOLIDS MANAGEMENT PROGRAM

8.1 INTRODUCTION

This section provides an overview of OCSD's Biosolids Program, focusing on the biosolids quality with respect to metals. Biosolids are nutrient-rich, treated organic matter recovered through the treatment of wastewater. These solids are considered a resource because of their nutrient and energy values, and they are recyclable in part because of their low metal content. The pretreatment program is a key element in ensuring the recyclability of OCSD's biosolids by minimizing the discharge of heavy metals and other undesirable constituents into the collection system and ultimately the treated solids, which are used to fertilize farms.

OCSD's annual biosolids compliance report was completed, submitted to regulators, and posted online in February. Visit <u>OCSD.com/503</u> to access the most recent document that contains Biosolids Program information, regulations, quantities, policies, guiding principles, and how and where biosolids are recycled.

8.2 BIOSOLIDS QUALITY

Biosolids quality plays an important role in ensuring the continued recyclability of OCSD's biosolids. OCSD's pretreatment program has been extremely effective in reducing and maintaining levels of pollutants (e.g., OCSD's influent sewage meets drinking water standards for the biosolids monitoring metals). The ceiling concentrations and EQ (exceptional quality) concentrations promulgated by the EPA's biosolids regulations (40 CFR 503) are presented in the figures as a reference. For FY 2019/20, OCSD biosolids met the EQ limits for all the regulated parameters.

TABLE 8.1	(Concentra	Trends in Trace Metal Content of Biosolids, Fiscal Years 2011-2020 Concentration in mg/kg, dry weight) Drange County Sanitation District, Resource Protection Division											
		Exceptional		Plant 1			Plant 2						
Metal	Fiscal Year	Quality Limits	Min.	Max.	Avg	Min.	Max	Avg.					
Arsenic		41											
	2010-11		7.2	9.7	8.4	8.6	12	10					
	2011-12		2.3	11	7.4	6.6	66	22					
	2012-13		0	7.8	4.7	2.0	10	7.0					
	2013-14*		3.5	9.5	5.8	5.4	11	8.4					
	2014-15		4.5	11	7.2	7.8	12	9.3					
	2015-16*		6.3	12	8.3	6.2	12	9.2					
	2016-17*		6.7	12	8.1	5.6	12	8.6					
	2017-18*		7.2	16	9.9	7.9	16	11					
	2018-19*		7.3	24	16	9.4	24	18					
	2019-20*		1.3	8.8	5.4	1.3	12	5.5					

TABLE 8.1	(Concentra	Trace Metal Cor ation in mg/kg, o unty Sanitation E	dry weigh	t)			0	
	Fiscal	Exceptional Quality		Plant 1			Plant 2	
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.
Cadmium		39						
	2010-11		1.2	3.8	2.6	1.4	5.0	2.5
	2011-12		0.8	6.0	3.8	1.1	4.4	3.6
	2012-13		2.6	7.8	4.7	1.9	4.4	3.1
	2013-14*		1.6	11	3.9	2.1	6.0	3.5
	2014-15		2.7	7.8	5.1	3.1	5.8	4.0
	2015-16*		1.3	4.7	2.5	2.0	4.5	3.0
	2016-17		2.6	3.1	2.3	2.0	3.8	3.0
	2017-18*		1.7	4.4	3.0	2.5	7.7	5.1
	2018-19*		1.2	3.0	1.6	2.7	8.4	4.2
	2019-20		1.3	2.7	1.9	2.2	8.4	3.3
		Exceptional		Plant 1			Plant 2	
	Fiscal	Quality						
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.
Chromium		**			Ŭ			U
	2010-11		41	58	47	50	66	59
	2011-12		42	74	52	40	70	56
	2012-13		42	56	49	42	59	49
	2013-14		39	52	45	40	53	46
	2014-15		30	51	40	34	70	46
	2015-16		31	89	46	28	60	46
	2016-17		30	89	49	29	67	46
	2017-18		27	38	34	38	54	44
	2018-19		29	58	39	32	53	45
	2019-20		37	51	45	35	49	42
		Exceptional		Plant 1			Plant 2	
	Fiscal	Quality						
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.
Copper		1,500			Ŭ.			¥
11.	2010-11	, -	520	600	570	500	720	570
	2011-12		430	670	520	380	720	520
	2012-13		480	640	540	500	640	540
	2013-14		460	540	510	470	540	500
	2014-15		320	570	470	320	560	470
	2015-16		380	560	460	340	570	480
	2016-17		400	560	460	340	570	490
	2017-18		320	500	420	380	590	460
	2018-19		355	600	470	335	665	510
	2019-20		440	600	530	410	590	490

TABLE 8.1	Trends in Trace Metal Content of Biosolids, Fiscal Years 2011-2020 (Concentration in mg/kg, dry weight) Orange County Sanitation District, Resource Protection Division										
	Fiscal	Exceptional Quality		Plant 1			Plant 2				
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.			
Lead	Tour	300		Max.	/wg.		Maxi	/wg.			
Loud	2010-11	000	21	24	23	9.0	30	20			
	2011-12		ND	25	9.0	ND	32	13			
	2012-13		7.5	19	15	7.5	17	14			
	2013-14*		13	18	14	13	17	14			
	2014-15*		8.7	15	13	9.0	17	13			
	2015-16*		8.3	20	12	8.0	17	13			
	2016-17*		7.9	20	11	7.5	17	12			
	2017-18*		8.9	19	12	10	16	13			
	2018-19		9.9	15	12	10	15	13			
	2019-20		9.8	14	12	14	24	17			
	Fiscal	Exceptional Quality		Plant 1			Plant 2				
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.			
Mercury		17									
	2010-11		0.8	2.2	1.3	0.8	2.3	1.2			
	2011-12		0.8	1.4	1.2	0.8	2.6	1.3			
	2012-13		0.7	4.1	1.5	0.8	3.8	1.4			
	2013-14		0.8	1.2	1.0	0.7	2.8	1.4			
	2014-15		1.0	1.5	1.1	1.0	1.5	1.0			
	2015-16		0.6	1.7	0.9	0.6	1.2	1.0			
	2016-17		0.5	1.7	0.9	0.7	1.2	0.9			
	2017-18		0.7	1.1	0.9	0.3	1.1	0.8			
	2018-19		0.6	1.1	0.9	0.6	1.0	0.8			
	2019-20		0.5	1.2	0.8	0.5	0.8	0.6			
	Fiscal	Exceptional Quality		Plant 1			Plant 2				
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.			
Molybdenum		**									
	2009-10		6.0	16	13	6.0	14	10			
	2010-11		12	19	15	4.8	18	14			
	2011-12		6.5	18	13	12	20	17			
	2012-13		9.8	20	14	12	20	15			
	2013-14		12	18	15	14	18	15			
	2014-15		9.4	18	15	12	20	16			
	2015-16*		11	18	15	11	23	16			
	2016-17		12	18	15	11	23	16 15			
	2017-18*		10 12	16 20	14 16	13 15	18	15			
	2018-19 2019-20		13 14	20 22	16 18	15 14	22 24	18 18			

TABLE 8.1	(Concent	Trace Metal C ration in mg/kg ounty Sanitation	, dry weig	ht)			0	
		Exceptional		Plant 1			Plant 2	
	Fiscal	Quality						
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.
Nickel		420						
	2010-11		28	46	37	14	38	32
	2011-12		15	48	35	20	39	31
	2012-13		34	48	40	23	41	30
	2013-14		36	55	43	28	56	37
	2014-15		26	47	37	26	41	34
	2015-16*		29	45	38	20	41	33
	2016-17		25	45	36	21	41	32
	2017-18		28	37	32	31	39	34
	2018-19		23	44	33	29	44	37
	2019-20		27	41	35	26	46	35
		Exceptional		Plant 1			Plant 2	
	Fiscal	Quality						
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.
Selenium		100						
	2010-11		2.8	26	11	3.7	26	9.8
	2011-12		ND	26	9.0	ND	19	9.0
	2012-13		0	20	9.0	0	20	8.0
	2013-14*		3.5	13	7.9	4.2	13	8.3
	2014-15*		4.1	13	7.1	4.5	15	7.3
	2015-16*		4.4	11	8.1	3.7	10	7.6
	2016-17*		4.1	10	8.4	4.8	10	8.0
	2017-18*		3.0	7.8	4.9	2.7	8.0	4.9
	2018-19*		2.5	48	6.6	2.3	2.9	2.7
	2019-20*		0.9	12	3.7	0.9	12	3.5
		Exceptional		Plant 1			Plant 2	
	Fiscal	Quality						
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.
Silver		**			Ŭ.			
	2010-11		10	17	13	5.2	12	9.6
	2011-12		7.0	14	10	4.0	12	8.5
	2012-13		6.2	14	8.6	6.4	13	8.6
	2013-14*		2.9	7.6	5.3	3.6	9.1	6.3
	2014-15*		3.3	7.8	5.8	3.4	8.6	6.5
	2015-16*		2.4	7.7	5.6	2.5	7.9	5.6
	2016-17*		2.7	5.6	4.4	2.5	6.8	4.9
	2017-18*		3.2	5.1	3.9	3.7	5.0	4.2
	2018-19*		2.9	5.1	4.0	3.5	5.8	4.3
	2019-20*		3.0	5.0	4.0	2.7	5.8	4.0

TABLE 8.1	(Concenti	Trace Metal Co ration in mg/kg, punty Sanitation I	dry weigh	it)			0	
		Exceptional		Plant 1			Plant 2	
	Fiscal	Quality						
Metal	Year	Limits	Min.	Max.	Avg.	Min.	Max.	Avg.
Zinc		2,800						
	2010-11		630	740	700	700	830	740
	2011-12		560	880	710	560	910	750
	2012-13		640	860	720	680	880	770
	2013-14		590	730	670	620	750	700
	2014-15		420	720	620	470	740	670
	2015-16		500	770	620	520	890	730
	2016-17		550	770	610	520	890	740
	2017-18		470	680	600	590	910	720
	2018-19		520	810	600	500	790	720
	2019-20		640	810	760	590	890	720

ND Non-detect

- * Calculations included data below the reporting limit, but above the method detection limit, and were therefore flagged as "detected not quantified" or the method detection limit was substituted for non-detect values.
- ** EPA's extensive health risk analysis determined that no limits were needed for these metals (EPA 40CFR 503).

Figure 8-1Trends in Concentrations of Arsenic in Biosolids, Fiscal Years 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-2Trends in Concentrations of Cadmium in Biosolids, Fiscal Years 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-3Trends in Concentrations of Chromium in Biosolids, Fiscal Years 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-4Trends in Concentrations of Copper in Biosolids, Fiscal Years 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-5Trends in Concentrations of Lead in Biosolids, Fiscal Years 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-7Trends in Concentrations of Molybdenum in Biosolids, Fiscal Years 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-8Trends in Concentrations of Nickel in Biosolids, Fiscal Years, 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-9Trends in Concentrations of Selenium in Biosolids, Fiscal Years 1995-2020Orange County Sanitation District, Resource Protection Division

Figure 8-10 Trends in Concentrations of Zinc in Biosolids, Fiscal Years 1995-2020 Orange County Sanitation District, Resource Protection Division

APPENDIX C

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
General Chemis	trv		Location				
Ammonia-N	SM 4500 NH3 G	mg/kg dry	Plant 1	01/21/2020	5000	160	200
		weight	Dewatering	01/28/2020		420	2100
			Cake	02/18/2020		400	2000
				02/25/2020		190	970
				03/17/2020		420	2100
				03/24/2020		410	2000
				04/21/2020		490	2500
				04/28/2020		400	2000
				05/20/2020		400	2000
				05/26/2020		390	2000
				06/02/2020		380	1900
				06/09/2020		410	2000
				07/21/2020		390	2000
				07/28/2020		400	2000
				08/18/2020		350	1800
				08/25/2020		420	2100
				09/15/2020		440	2200
				09/22/2020		420	2100
				10/20/2020		410	2100
				10/27/2020		400	2000
				11/03/2020		430	2100
				11/17/2020		410	2100
				12/01/2020		430	2200
				12/08/2020		390	1900
	SM 4500 NH3 G			Annual Mean	8500	000	1000
				Annual Max	11000		
		mg/kg dry	Plant 2	01/21/2020		140	180
		weight		01/28/2020		400	2000
				02/18/2020		350	1800
				02/25/2020		180	910
				03/17/2020		380	1900
				03/24/2020		360	1800
				04/21/2020		510	2600
				04/28/2020		380	1900
				05/19/2020		400	2000
				05/26/2020		370	1800
				06/02/2020		340	1700
				06/09/2020		390	1900
				07/21/2020		350	1800
				07/28/2020		370	1800
				08/18/2020		300	1500
				08/25/2020		360	1800
				09/15/2020		350	1700
				09/22/2020		370	1900
				10/20/2020		360	1800
				10/27/2020		370	1800
				11/03/2020		460	2300
				11/17/2020		350	1700
				12/01/2020		350	1700
				12/08/2020		390	2000
				Annual Mean	6100		
				Annual Max	8800		
Fluoride	EPA 300.0	mg/kg dry	Plant 1	01/21/2020		1.6	16
		weight	Dewatering	07/21/2020		14	20
		U	Cake	Annual Mean	47 DNQ		-
	1	1	1				_

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 300.0	mg/kg dry	Plant 2	01/21/2020	160	1.5	15
		weight	Dewatering	07/21/2020	29	13	18
			Cake	Annual Mean	94		
				Annual Max	160		
lexavalent	EPA 7196A	mg/kg dry	Plant 1	01/21/2020	ND	100	210
Chromium		weight	Dewatering	04/21/2020	ND	120	250
			Cake	07/21/2020	ND	10	20
				10/20/2020	ND	52	100
				Annual Mean	<120		
				Annual Max	<120		
	EPA 7196A	mg/kg dry	Plant 2	01/21/2020	ND	92	180
		weight	Dewatering Cake	04/21/2020	ND	26	52
				07/21/2020	ND	9.0	18
				10/20/2020	ND	46	92
				Annual Mean	<92		
				Annual Max	<92		
kjeldahl Nitrogen	eldahl Nitrogen EPA 351.2	mg/kg dry	Plant 1	01/28/2020	52000	5900	7800
	weight	Dewatering Cake	02/18/2020	54000	4700	6200	
			02/25/2020	51000	6200	8300	
				03/17/2020	51000	5500	7300
				03/24/2020	55000	5000	6600
				04/21/2020	69000	6200	8200
				04/28/2020	49000	7300	9700
				05/20/2020	53000	5000	6700
				05/26/2020	55000	4900	6600
				06/02/2020	51000	5400	7300
				06/09/2020	49000	5000	6600
				07/21/2020	55000	7400	9900
				07/28/2020		6300	8400
				08/18/2020	47000	6000	8000
				08/25/2020	51000	4600	6200
				09/15/2020	56000	1500	4200
				09/22/2020		1500	4200
				10/20/2020		1300	3800
				10/27/2020		1400	3900
				11/03/2020		1500	4300
				11/17/2020		5300	7100
				12/01/2020		5200	6900
				12/08/2020		5400	7200
				Annual Mean	55000		
				Annual Max	69000		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 351.2	mg/kg dry	Plant 2	01/28/2020	52000	4800	6400
		weight	Dewatering	02/18/2020	53000	4600	6200
			Cake	02/25/2020	51000	5300	7000
				03/17/2020		4800	6300
				03/24/2020		5300	7000
				04/21/2020		6700	8900
				04/28/2020		6500	8700
				05/19/2020	56000	5400	7200
				05/26/2020	49000	5000	6700
				06/02/2020		5900	7800
				06/09/2020	49000	4800	6400
				07/21/2020	51000	4500	6000
				07/28/2020	49000	4700	6200
				08/18/2020	43000	5700	7600
				08/25/2020	43000	5200	6900
				09/15/2020	46000	1200	3500
				09/22/2020	53000	1300	3600
				10/20/2020	51000	1300	3600
				10/27/2020	56000	1200	3400
				11/03/2020	57000	1500	4400
				11/17/2020	45000	4300	5800
				12/01/2020	45000	4700	6300
				12/08/2020	49000	5000	6700
				Annual Mean	51000		
				Annual Max	73000		
Nitrate-N	EPA 300.0	mg/kg dry	dry Plant 1 Dewatering Cake	01/21/2020	ND	2.1	4.1
		weight		01/28/2020	ND	3.4	4.7
				02/18/2020	ND	3.2	4.5
				02/25/2020	ND	3.1	4.3
				03/17/2020	ND	3.4	4.6
				03/24/2020	ND	3.3	4.5
				04/21/2020	ND	4.0	5.5
				04/28/2020	ND	3.2	4.4
				05/20/2020	ND	3.3	4.5
				05/26/2020	ND	3.2	4.4
				06/02/2020	ND	3.1	4.2
				06/09/2020	ND	3.3	4.5
				07/21/2020	ND	3.2	4.4
				07/28/2020	ND	3.2	4.4
				08/18/2020	ND	3.4	4.7
				08/25/2020	ND	3.4	4.7
				09/15/2020		3.6	4.9
				09/22/2020		3.4	4.7
				10/20/2020		3.3	4.5
				10/27/2020		3.3	4.5
				11/03/2020		3.4	4.7
				11/17/2020		3.3	4.5
				12/01/2020		3.5	4.8
				12/08/2020		3.1	4.3
				Annual Mean	<4.0	_	
				Annual Max	<4.0	_	

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 300.0	mg/kg dry	Plant 2	01/21/2020	ND	1.9	3.6
		weight	Dewatering	01/28/2020	ND	3.2	4.4
			Cake	02/18/2020	ND	2.9	3.9
				02/25/2020	ND	3.0	4.1
				03/17/2020	ND	3.1	4.3
				03/24/2020	14	2.9	4.0
				04/21/2020	ND	4.1	5.7
				04/28/2020	ND	3.0	4.2
				05/19/2020	ND	3.2	4.4
				05/26/2020	ND	3.0	4.1
				06/02/2020	3.5 DNQ	2.8	3.9
				06/09/2020		3.2	4.4
				07/21/2020		2.9	3.9
				07/28/2020		3.0	4.1
				08/18/2020		2.9	4.0
				08/25/2020		2.9	4.0
				09/15/2020		2.9	3.9
				09/22/2020		3.0	4.2
				10/20/2020		3.0	4.1
				10/27/2020		3.0	4.1
				11/03/2020		3.7	5.1
				11/17/2020		2.8	3.8
				12/01/2020		2.8	3.9
				12/08/2020		3.2	4.4
				Annual Mean	3.5 DNQ	5.2	4.4
				Annual Max	14		
Nitrite-N	EPA 300.0	mg/kg dry	Plant 1	01/21/2020		1.3	4.1
	EFA 300.0	weight		01/28/2020		4.7	6.4
				02/18/2020		4.7	6.1
							5.9
				02/25/2020		4.3	
				03/17/2020		4.6	6.3 6.2
				03/24/2020 04/21/2020		4.5	
						5.5	7.4
				04/28/2020		4.4	6.0
				05/20/2020		4.5	6.1
				05/26/2020		4.4	6.0
				06/02/2020		4.2	5.7
				06/09/2020		4.5	6.2
				07/21/2020		4.4	6.0
				07/28/2020		4.4	6.0
				08/18/2020		4.7	6.4
				08/25/2020		4.7	6.4
				09/15/2020		4.9	6.7
				09/22/2020		4.7	6.4
				10/20/2020		4.5	6.1
				10/27/2020		4.5	6.1
				11/03/2020		4.7	6.4
				11/17/2020		4.5	6.2
				12/01/2020		4.8	6.5
				12/08/2020		4.3	5.8
				Annual Mean	5.2 DNQ		
				Annual Max	17		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 300.0	mg/kg dry	Plant 2	01/21/2020	ND	1.2	3.6
		weight	Dewatering	01/28/2020	ND	4.4	6.0
			Cake	02/18/2020	ND	3.9	5.4
				02/25/2020	ND	4.1	5.5
				03/17/2020	ND	4.3	5.8
				03/24/2020	ND	4.0	5.4
				04/21/2020	ND	5.7	7.8
				04/28/2020	ND	4.2	5.7
				05/19/2020	ND	4.4	6.0
				05/26/2020	ND	4.1	5.5
				06/02/2020	ND	3.9	5.3
				06/09/2020	ND	4.4	6.0
				07/21/2020	ND	3.9	5.4
				07/28/2020	ND	4.1	5.6
				08/18/2020	ND	4.0	5.4
				08/25/2020	ND	4.0	5.5
				09/15/2020	ND	3.9	5.4
				09/22/2020	ND	4.2	5.7
				10/20/2020	ND	4.1	5.5
				10/27/2020	ND	4.1	5.6
				11/03/2020	ND	5.1	6.9
				11/17/2020	ND	3.8	5.2
				12/01/2020	ND	3.9	5.3
				12/08/2020	ND	4.4	6.0
				Annual Mean	<5.7		
				Annual Max	<5.7		
Organic Lead	HML 939-M	mg/kg dry	Plant 1	01/21/2020	ND	0.028	0.041
		weight	Dewatering	04/21/2020	ND	0.034	0.049
			Cake	07/21/2020	ND	0.027	0.039
				10/20/2020	ND	0.028	0.041
				Annual Mean	<0.034		
				Annual Max	<0.034		
	HML 939-M	mg/kg dry	Plant 2	01/21/2020	ND	0.026	0.037
		weight	Dewatering	04/21/2020	ND	0.036	0.052
			Cake	07/21/2020	ND	0.025	0.035
				10/20/2020	ND	0.025	0.037
				Annual Mean	<0.036		
				Annual Max	<0.036		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Organic Nitrogen	CALC	mg/kg dry	Plant 1	01/28/2020	44000		
		weight	Dewatering	02/18/2020	45000		
			Cake	02/25/2020	43000		
				03/17/2020	43000		
				03/24/2020	47000		
				04/21/2020	60000		
				04/28/2020	41000		
				05/20/2020	45000		
				05/26/2020	47000		
				06/02/2020	43000		
				06/09/2020	41000		
				07/21/2020	47000		
				07/28/2020	45000		
				08/18/2020	39000		
				08/25/2020	42000		
				09/15/2020	46000		
				09/22/2020	54000		
				10/20/2020	52000		
				10/27/2020	46000		
				11/03/2020	51000		
				11/17/2020	47000		
				12/01/2020	42000		
				12/08/2020	46000		
				Annual Mean	46000		
				Annual Max	60000		
	CALC	mg/kg dry	y Plant 2	01/28/2020	45000		
		weight		02/18/2020	44000		
				02/25/2020	44000		
				03/17/2020	49000		
				03/24/2020	47000		
				04/21/2020	66000		
				04/28/2020	48000		
				05/19/2020	51000		
				05/26/2020	44000		
				06/02/2020	41000		
				06/09/2020	44000		
				07/21/2020	46000		
				07/28/2020	44000		
				08/18/2020	36000		
				08/25/2020	37000		
				09/15/2020	39000		
				09/22/2020	45000		
				10/20/2020	44000		
				10/27/2020	50000		
				11/03/2020	51000		
				11/17/2020			
				12/01/2020	39000		
				12/08/2020			
			Δ	Annual Mean	45000		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
		add to a 20	Location	04/04/0000	0.4	0.40	0.4
Η	EPA 9045C	pH units	Plant 1	01/21/2020		0.10	0.1
			Dewatering Cake	01/28/2020		0.10	0.1
			Cake	02/18/2020		0.10	0.1
				02/25/2020		0.10	0.1
				03/17/2020		0.10	0.1
				03/24/2020		0.10	0.1
				04/21/2020		0.10	0.1
				04/28/2020		0.10	0.1
				05/20/2020	8.1	0.10	0.1
				05/26/2020	8.1	0.10	0.1
				06/02/2020	8.2	0.10	0.1
				06/09/2020	8.0	0.10	0.1
				07/21/2020	8.2	0.10	0.1
				07/28/2020	8.2	0.10	0.1
				08/18/2020		0.10	0.1
				08/25/2020		0.10	0.1
				09/15/2020		0.10	0.1
				09/22/2020		0.10	0.1
				10/20/2020		0.10	0.1
				10/20/2020		0.10	0.1
							0.1
				11/03/2020		0.10	_
				11/17/2020		0.10	0.1
				12/01/2020		0.10	0.1
				12/08/2020		0.10	0.1
EPA 9045C			Annual Mean	8.1			
			Annual Max	8.3			
	pH units	Plant 2	01/21/2020	7.9	0.10	0.1	
		Dewatering	01/28/2020	8.2	0.10	0.1	
		Cake	02/18/2020	8.1	0.10	0.1	
				02/25/2020	8.0	0.10	0.1
				03/17/2020	8.1	0.10	0.1
				03/24/2020	8.0	0.10	0.1
				04/21/2020		0.10	0.1
				04/28/2020		0.10	0.1
				05/19/2020		0.10	0.1
				05/26/2020		0.10	0.1
				06/02/2020		0.10	0.1
				06/09/2020			_
						0.10	0.1
				07/21/2020		0.10	0.1
				07/28/2020		0.10	0.1
				08/18/2020		0.10	0.1
				08/25/2020		0.10	0.1
				09/15/2020		0.10	0.1
				09/22/2020		0.10	0.1
				10/20/2020		0.10	0.1
				10/27/2020		0.10	0.1
				11/03/2020	8.2	0.10	0.1
				11/17/2020	7.9	0.10	0.1
				12/01/2020	8.0	0.10	0.1
				12/08/2020		0.10	0.1
				Annual Mean	8.1		
				Annual Max	8.3		
otal Cyanide	EPA 9014	mg/kg dry	Plant 1	01/21/2020		0.34	0.79
		weight	Dewatering	04/21/2020		2.0	2.4
		weigin	Cake				-
			Jake	07/21/2020		1.7	2.0
				10/20/2020		1.8	2.0
				Annual Mean	3.3 DNQ		
			1	Annual Max	7.8		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 9014	mg/kg dry	Plant 2	01/21/2020		0.30	0.71
		weight	Dewatering	04/21/2020		2.2	2.5
			Cake	07/21/2020		1.5	1.8
				10/20/2020		1.6	1.8
				Annual Mean	3.4 DNQ		
				Annual Max	8.3		
Total Nitrogen	CALC	mg/kg dry	Plant 1	01/28/2020	52000		
	weight	weight	Dewatering	02/18/2020	54000		
			Cake	02/25/2020	51000		
				03/17/2020	51000		
				03/24/2020	55000		
				04/21/2020			
				04/28/2020			
				05/20/2020			
				05/26/2020			
				06/02/2020			
				06/09/2020			
				07/21/2020			
				07/28/2020			
				07/28/2020			
				08/25/2020			
				09/15/2020			
				09/22/2020			
				10/20/2020			
				10/27/2020			
				11/03/2020			
				11/17/2020			
				12/01/2020			
				12/08/2020			
				Annual Mean	55000		
				Annual Max	69000		
	CALC	mg/kg dry	Plant 2	01/28/2020	52000		
		weight	Dewatering	02/18/2020	53000		
			Cake	02/25/2020	51000		
				03/17/2020	54000		
				03/24/2020			
				04/21/2020	73000		
				04/28/2020	53000		
				05/19/2020			
				05/26/2020			
				06/02/2020			
				06/09/2020			
				07/21/2020			
				07/28/2020			
				08/18/2020			
				08/25/2020			
				09/15/2020			
				09/15/2020			
				10/20/2020			
				10/27/2020			
				11/03/2020			
				11/17/2020			
				12/01/2020			
				12/08/2020			
				Annual Mean	51000		
				Annual Max	73000		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL	
			Location					
Total Solids	SM 2540G	%	Plant 1	01/21/2020	24	0.050	0.050	
			Dewatering	01/28/2020	23	0.050	0.050	
			Cake	02/18/2020		0.050	0.050	
				02/25/2020	26	0.050	0.050	
				03/17/2020	24	0.050	0.050	
				03/24/2020	24	0.050	0.050	
				04/21/2020	20	0.050	0.050	
				04/28/2020	25	0.050	0.050	
				05/20/2020	25	0.050	0.050	
				05/26/2020	25	0.050	0.050	
				06/02/2020	26	0.050	0.050	
				06/09/2020	24	0.050	0.050	
				07/21/2020	25	0.050	0.050	
				07/28/2020	25	0.050	0.050	
				08/18/2020	23	0.050	0.050	
				08/25/2020	24	0.050	0.050	
				09/15/2020	23	0.050	0.050	
				09/22/2020	24	0.050	0.050	
				10/20/2020	24	0.050	0.050	
				10/27/2020	25	0.050	0.050	
				11/03/2020	23	0.050	0.050	
				11/17/2020			0.050	
				12/01/2020			0.050	
				12/08/2020	26			
				Annual Mean				
				Annual Max	26		0.050	
	SM 2540G	%	Plant 2	01/21/2020	27	0.050	0.050	
			Dewatering	01/28/2020	25	0.050	0.050	
			Cake	01/28/2020	28		0.050	
				02/25/2020	27		0.050	
				03/17/2020			0.050	
				03/24/2020			0.050	
				04/21/2020			0.050	
				04/28/2020			0.050	
				05/19/2020	25	0.050	0.050	
				05/26/2020	27	0.050 0.050 </td		
				06/02/2020	28	0.050	0.050	
				06/09/2020		0.050 0 0.050 <td< td=""></td<>		
				07/21/2020			0.050	
				07/28/2020			0.050	
				08/18/2020			0.050	
				08/25/2020			0.050	
				09/15/2020			0.050	
				09/22/2020			0.050	
				10/20/2020			0.050	
				10/27/2020			0.050	
				11/03/2020			0.050	
				11/17/2020			0.050	
				12/01/2020			0.050	
				12/08/2020			0.050	
				Annual Mean	26			
				Annual Max	29			

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Trace Elements			Location				
Antimony	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	ND	2.5	5.0
, unumony		weight	Dewatering	04/21/2020		1.1	2.4
		g.	Cake	07/21/2020		0.89	1.9
				10/20/2020		0.95	2.0
				Annual Mean	2.0 DNQ		
				Annual Max	3.6		
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	ND	2.3	4.7
		weight	Dewatering	04/21/2020		1.2	2.6
		-	Cake	07/21/2020		0.80	1.8
				10/20/2020	3.6	0.86	1.8
				Annual Mean	2.0 DNQ		
				Annual Max	3.6		
Arsenic	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	9.2	2.2	6.7
		weight	Dewatering	01/28/2020	8.3	2.4	7.3
			Cake	02/18/2020	ND	2.4 6.2 6.0 1.4	12
				02/25/2020	ND	6.0	12
				03/17/2020	ND	1.4	4.2
				03/24/2020	ND	1.3	4.1
				04/21/2020	ND	1.6	4.9
				04/28/2020	ND	1.3	4.0
				05/20/2020	ND	1.3	3.9
				05/26/2020	ND	1.3	3.9
				06/02/2020	ND	1.2	3.8
				06/09/2020	ND	1.3	4.0
				07/21/2020	ND	1.3	3.9
				07/28/2020	ND	1.3	4.0
				08/18/2020	ND	1.4	4.2
				08/25/2020	ND	1.4	4.2
				09/15/2020	ND	1.4	4.4
				09/22/2020	ND	1.4	4.2
				10/20/2020	8.7 DNQ	1.0	10
				10/27/2020	8.9 DNQ	1.0	10
				11/03/2020	10 DNQ	1.1	11
				11/17/2020		1.0	10
				12/01/2020	10 DNQ	1.1	11
				12/08/2020	12	0.96	9.5
				Annual Mean	4.6 DNQ		
				Annual Max	12		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
		<i>"</i>	Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020		2.1	6.3
		weight	Dewatering	01/28/2020		2.3	7.0
			Cake	02/18/2020		5.5	11
				02/25/2020		5.6	11
				03/17/2020		1.3	3.8
				03/24/2020		1.2	3.6
				04/21/2020		1.7	5.2
				04/28/2020		1.2	3.8
				05/19/2020		1.3	3.9
				05/26/2020		1.2	3.7
				06/02/2020		1.1	3.4
				06/09/2020		1.3	3.9
				07/21/2020		1.2	3.5
				07/28/2020		1.2	3.7
				08/18/2020	ND	1.2	3.6
				08/25/2020	ND	1.2	3.6
				09/15/2020	ND	1.2	3.5
				09/22/2020	ND	1.2	3.8
			10/ 11/ 11/	10/20/2020	14	0.93	9.1
				10/27/2020	14	0.93	9.1
				11/03/2020	20	1.2	11
				11/17/2020	17	0.88	8.6
				12/01/2020	14	0.88	8.6
				12/08/2020	19	1.0	9.7
				Annual Mean	6.2 DNQ		
				Annual Max	20		
Barium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	590	0.99	3.3
		weight	Dewatering	07/21/2020	540	0.76	19
			Cake	Annual Mean	560		
				Annual Max	590		
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	1100	0.94	3.2
		weight	Dewatering	07/21/2020	1300	0.69	18
			Cake	Annual Mean	1200		
				Annual Max	1300		
Beryllium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	ND	0.11	1.7
		weight	Dewatering	04/21/2020	ND	0.33	0.73
			Cake	07/21/2020	ND	0.26	0.97
				10/20/2020	0.11 DNQ	0.024	0.20
				Annual Mean	0.20 DNQ		
				Annual Max	0.11 DNQ		
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020		0.10	1.6
		weight	Dewatering	04/21/2020		0.35	0.77
			Cake	07/21/2020		0.24	0.88
					0.093 DNQ	0.021	0.18
				Annual Mean	0.21 DNQ		-
				Annual Max	0.093 DNQ		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL		
			Location						
Cadmium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	1.5 DNQ	0.14	1.7		
		weight	Dewatering	01/28/2020	1.8	0.15	1.8		
			Cake	02/18/2020	1.9 DNQ	0.25	2.0		
				02/25/2020	2.3	0.24	1.9		
					03/17/2020	1.8	0.082	0.21	
				03/24/2020	1.9	0.081	0.20		
				04/21/2020	2.1	0.096	0.24		
				04/28/2020	1.9	0.078	0.20		
				05/20/2020	1.8	0.078	0.20		
				05/26/2020	1.9	0.078	0.20		
				06/02/2020	1.5	0.075	0.19		
				06/09/2020	1.9	0.079	0.20		
				07/21/2020	1.5	0.077	0.19		
				07/28/2020	1.7	0.079	0.20		
				08/18/2020	1.7	0.082	0.21		
				08/25/2020	1.4	0.083	0.21		
				09/15/2020	1.4	0.087	0.22		
				09/22/2020	1.6	0.083	0.21		
				10/20/2020	1.2	0.17	0.40		
				10/27/2020	1.2	0.17	0.40		
				11/03/2020	1.2	0.18	0.43		
				11/17/2020	0.97	0.17	0.41		
				12/01/2020 1.5	0.18	0.43			
				12/08/2020	1.6	0.16	0.38		
				Annual Mean	1.6 DNQ				
				Annual Max	2.3				
	EPA 6010C	mg/kg dry weight	Plant 2 Dewatering	01/21/2020	2.6	0.13	1.6		
				01/28/2020	2.5	0.14	1.8		
			Cake		0.22	1.8			
				02/25/2020	1/21/2020 2.1 0.096 0. 1/28/2020 1.9 0.078 0. 1/20/2020 1.8 0.078 0. 1/26/2020 1.9 0.078 0. 1/26/2020 1.9 0.079 0. 1/21/2020 1.5 0.079 0. 1/21/2020 1.7 0.082 0. 1/22/2020 1.4 0.083 0. 1/2/2020 1.4 0.083 0. 1/2/2020 1.2 0.17 0. 1/2/2020 1.2 0.17 0. 1/2/2020 1.2 0.17 0. 1/2/2020 1.2 0.17 0. 1/2/2020 1.5 0.18 0. 1/2/2020 1.6 0.16 0. 1/2/2020 1.6 0.16 0. 1/2/2020 1.6 0.13 1. 1/2/2020 2.6 0.13 1. 1/2/2/2020 2.4 0.22 1. 1/2/2/2020 2.7 0.074 0.				
				03/17/2020	2.6	0.076	0.19		
				03/24/2020	3.1	0.071	0.18		
				04/21/2020	4.0	0.10	0.26		
				04/28/2020	2.7	0.074	0.19		
				05/19/2020	2.7	0.077	0.20		
				05/26/2020	2.2	0.073	0.18		
				06/02/2020	2.5	5 0.077 0 7 0.079 0 7 0.082 0 4 0.083 0 4 0.083 0 4 0.087 0 6 0.083 0 2 0.17 0 2 0.17 0 2 0.18 0 97 0.17 0 5 0.18 0 6 0.16 0 6 0.16 0 6 0.13 1 5 0.14 1 0 0.22 1 4 0.22 1 6 0.076 0 1 0.071 0 7 0.074 0 7 0.073 0 5 0.067 0 3 0.072 0 4 0.070 0 3 0.071			
				06/09/2020	2.9	0.077	0.19		
				07/21/2020	2.4	0.070	0.18		
				07/28/2020	2.3	0.072	0.18		
				08/18/2020	2.2	0.072	0.18		
				08/25/2020	2.3	0.071	0.18		
				09/15/2020	2.0	0.070	0.18		
				09/22/2020	2.1	0.074	0.19		
				10/20/2020	2.1	0.15	0.36		
				10/27/2020	1.9	0.15	0.37		
							0.46		
							0.34		
							0.35		
				12/08/2020		0.17	0.39		
				Annual Mean	2.4				

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL	
			Location					
Chromium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	49	0.41	5.0	
		weight	Dewatering	01/28/2020	51	0.45	5.5	
			Cake	02/18/2020	41	2.6	8.0	
				02/25/2020	49	2.6	7.8	
			03/17/2020	42	0.39	1.0		
				03/24/2020	50	0.38	1.0	
				04/21/2020	50	0.46	1.2	
				04/28/2020	50	0.37	0.99	
				05/20/2020	47	0.37	0.99	
				05/26/2020	55	0.37	0.99	
				06/02/2020	50	0.35	0.94	
				06/09/2020	59	0.37	1.0	
				07/21/2020	51	0.37	0.97	
				07/28/2020	50	0.38	1.0	
				08/18/2020	50	0.39		
				08/25/2020	50	0.39		
				09/15/2020	52	0.41	1.1	
				09/22/2020	50	0.39	1.0	
				10/20/2020	43	0.65	1.0	
				10/27/2020	43	0.65	1.0	
				11/03/2020	44	0.69	1.1	
				11/17/2020	43	0.65	1.0	
				12/01/2020 44 0.68	0.68	1.1		
				12/08/2020	48	0.61	0.95	
				Annual Mean	48			
				Annual Max	59		1.0 1.0 1.1 1.1 0.95 4.7 5.3 7.1 7.2 0.96	
	EPA 6010C	mg/kg dry weight	Plant 2	01/21/2020	44	0.39		
			Dewatering	01/28/2020 45	45	0.43		
			Cake	02/18/2020	33	2.3		
				02/25/2020	59			
				03/17/2020		2.6 8.0 2.6 7.8 0.39 1.0 0.38 1.0 0.46 1.2 0.37 0.99 0.37 0.99 0.37 0.99 0.37 0.99 0.37 0.99 0.37 0.99 0.37 0.99 0.37 0.91 0.37 0.92 0.37 0.93 0.37 0.91 0.37 0.92 0.38 1.0 0.39 1.0 0.39 1.0 0.41 1.1 0.39 1.0 0.65 1.0 0.65 1.0 0.65 1.0 0.65 1.0 0.65 1.0 0.65 1.0 0.68 1.1 0.61 0.95 0.39 4.7 0.43 5.3 2.3 7.1 2.4 7.2		
				03/24/2020		0.34		
				04/21/2020				
				04/28/2020				
				05/19/2020		0.37	0.98	
				05/26/2020			0.92	
				06/02/2020			0.85	
				06/09/2020				
				07/21/2020				
				07/28/2020				
				08/18/2020				
				08/25/2020				
				09/15/2020				
				09/22/2020				
				10/20/2020				
				10/27/2020				
				11/03/2020				
				11/17/2020				
				12/01/2020			-	
				12/08/2020		0.63	0.97	
				Annual Mean	50			
				Annual Max	66			

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Cobalt	EPA 6010C	mg/kg dry	Plant 1	01/21/2020		0.23	3.3
		weight	Dewatering	07/21/2020	2.6	0.20	0.97
			Cake	Annual Mean	2.6 DNQ		
				Annual Max	2.6		
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	3.1 DNQ	0.21	3.2
		weight	Dewatering	07/21/2020	2.4	0.18	0.88
			Cake	Annual Mean	2.8 DNQ		
				Annual Max	2.4		
Copper	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	510	0.73	6.7
		weight	Dewatering	01/28/2020	550	0.79	7.3
			Cake	02/18/2020	470	6.0	10
				02/25/2020	540	5.9	9.7
				03/17/2020	570	0.30	1.0
				03/24/2020	620	0.30	1.0
				04/21/2020	560	0.35	1.2
				04/28/2020	530	0.29	0.99
				05/20/2020	520	0.29	0.99
				05/26/2020	490	0.29	0.99
				06/02/2020	440	0.27	0.94
				06/09/2020	530	0.29	1.0
				07/21/2020	540	0.28	0.97
				07/28/2020	540	0.29	1.0
				08/18/2020	570	0.30	1.0
				08/25/2020	260	0.30	1.0
					570	0.30	1.0
				09/15/2020	670	0.32	1.1
				09/22/2020	640	0.30	1.0
				10/20/2020	540	0.46	1.0
				10/27/2020	560	0.47	1.0
				11/03/2020	540	0.49	1.1
				11/17/2020	520	0.47	1.0
				12/01/2020	520	0.49	1.1
				12/08/2020	530	0.44	0.95
				Annual Mean	530	1	
				Annual Max	670		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	430	0.69	6.3
		weight	Dewatering	01/28/2020	470	0.76	7.0
			Cake	02/18/2020	350	5.4	8.9
				02/25/2020	460	5.5	9.0
				03/17/2020	540	0.28	0.96
				03/24/2020	540	0.26	0.90
				04/21/2020	630	0.38	1.3
				04/28/2020	470	0.27	0.94
				05/19/2020	470	0.29	0.98
				05/26/2020	360	0.27	0.92
				06/02/2020	420	0.25	0.85
				06/09/2020	490	0.28	0.97
				07/21/2020	500	0.26	0.88
				07/28/2020	540	0.27	0.91
				08/18/2020	500	0.27	0.91
				08/25/2020	480	0.26	0.91
				09/15/2020	490	0.26	0.89
				09/22/2020	510	0.27	0.94
				10/20/2020	470	0.42	0.91
				10/27/2020	530	0.42	0.91
				11/03/2020	520	0.53	1.1
				11/17/2020		0.40	0.86
				12/01/2020	410	0.40	0.86
				12/08/2020		0.45	0.97
				Annual Mean	480		
				Annual Max	630		
Iron	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	69000	28	67
		weight	Dewatering Cake	01/28/2020	68000	30	73
		-		02/18/2020	63000	26	40
				02/25/2020	66000	14	78
				03/17/2020	56000	15	83
				03/24/2020	65000	14	82
				04/21/2020		17	97
				04/28/2020		14	79
				05/20/2020	64000	14	79
				05/26/2020	60000	14	79
				06/02/2020	63000	13	75
				06/09/2020	72000	14	80
				07/21/2020	65000	14	78
				07/28/2020		14	80
				08/18/2020	71000	15	83
				08/25/2020	73000	15	84
				09/15/2020		16	88
				09/22/2020		15	84
				10/20/2020		4.8	80
				10/27/2020		4.8	81
				11/03/2020		5.1	85
				11/17/2020		4.8	82
				12/01/2020		5.1	85
				12/08/2020		4.5	76
				Annual Mean	67000		
				Annual Max	78000		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	70000	26	63
		weight	Dewatering	01/28/2020	74000	29	70
			Cake	02/18/2020	66000	23	35
				02/25/2020	70000	13	72
				03/17/2020	66000	14	77
				03/24/2020	73000	13	72
				04/21/2020	90000	18	100
				04/28/2020	78000	13	75
				05/19/2020	77000	14	78
				05/26/2020		13	74
				06/02/2020		12	68
				06/09/2020		14	78
				07/21/2020		12	70
				07/28/2020		13	73
				08/18/2020		13	73
				08/25/2020		13	72
				09/15/2020		13	71
				09/22/2020		13	75
				10/20/2020		4.3	73
				10/27/2020		4.4	73
				11/03/2020		5.4	91
						4.1	
				11/17/2020			69
				12/01/2020		4.1	69
				12/08/2020		4.6	78
				Annual Mean	76000		
				Annual Max	90000	4.0	
Lead	EPA 6010C	PA 6010C mg/kg dry weight	Dewatering 01/28/202 Cake 02/18/202 02/25/202 02/25/202	01/21/2020		1.0	3.0
						1.1	3.3
						3.0	4.0
						3.0	3.9
				03/17/2020		0.45	1.0
				03/24/2020		0.44	1.0
				04/21/2020		0.52	1.2
				04/28/2020		0.43	0.99
				05/20/2020		0.42	0.99
				05/26/2020		0.42	0.99
				06/02/2020		0.41	0.94
				06/09/2020		0.43	1.0
				07/21/2020		0.42	1.9
				07/28/2020	15	0.43	2.0
				08/18/2020	13	0.45	2.1
				08/25/2020	13	0.45	2.1
				09/15/2020	3.4	0.47	2.2
				09/22/2020	3.2	0.45	2.1
				10/20/2020	1.5 DNQ	0.58	2.0
				10/27/2020	2.9	0.58	2.0
				11/03/2020		0.61	2.1
				11/17/2020		0.59	2.0
				12/01/2020		0.61	2.1
				12/08/2020		0.54	1.9
				Annual Mean	10 DNQ	0.01	
				Annual Max	18		
1					10		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	28	0.98	2.8
		weight	Dewatering	01/28/2020	19	1.1	3.2
			Cake	02/18/2020	14	2.7	3.5
				02/25/2020	17	2.7	3.6
				03/17/2020	17	0.41	0.96
				03/24/2020	19	0.39	0.90
				04/21/2020	21	0.56	1.3
				04/28/2020	18	0.40	0.94
				05/19/2020	22	0.42	0.98
				05/26/2020	16	0.40	0.92
				06/02/2020	20	0.37	0.85
				06/09/2020	23	0.42	0.97
				07/21/2020	18	0.38	1.8
				07/28/2020	18	0.39	1.8
				08/18/2020	17	0.39	1.8
				08/25/2020	17	0.39	1.8
				09/15/2020		0.38	1.8
				09/22/2020	6.2	0.40	1.9
				10/20/2020		0.52	1.8
				10/27/2020		0.53	1.8
				11/03/2020		0.66	2.3
				11/17/2020		0.49	1.7
				12/01/2020		0.50	1.7
				12/08/2020		0.56	1.9
				Annual Mean	15	0.00	
				Annual Max	28		
Magnesium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020		27	67
		weight	Dewatering Cake	01/28/2020		29	73
		- 5		02/18/2020		13	100
				02/25/2020		13	97
				03/17/2020		18	42
				03/24/2020		17	41
				04/21/2020		21	49
				04/28/2020		17	40
				05/20/2020		17	39
				05/26/2020		17	39
				06/02/2020		16	38
				06/09/2020		17	40
				07/21/2020		16	39
				07/28/2020		17	40
				08/18/2020		18	42
				08/25/2020		18	42
				09/15/2020		19	44
				09/22/2020		18	42
				10/20/2020		8.9	40
				10/27/2020		8.9	40
				11/03/2020		9.4	43
				11/17/2020		9.0	41
				12/01/2020		9.0 9.4	43
				12/08/2020		9.4 8.3	43 38
				Annual Mean	6100	0.0	50
				Annual Max	7900		
					1900		
Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
-----------	-----------	---------------------	--------------------	---------------------------	--------	-------	-------
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	6700	25	63
		weight	Dewatering	01/28/2020	7000	28	70
			Cake	02/18/2020	5200	12	89
				02/25/2020	6300	12	90
				03/17/2020	5900	16	38
				03/24/2020	6700	15	36
				04/21/2020	7700	22	52
				04/28/2020	7200	16	38
				05/19/2020		17	39
				05/26/2020		16	37
				06/02/2020		14	34
				06/09/2020		16	39
				07/21/2020		15	35
				07/28/2020		15	37
				08/18/2020		15	36
				08/25/2020		15	36
				09/15/2020		15	35
				09/22/2020		16	38
				10/20/2020		8.0	36
				10/27/2020		8.1	37
				11/03/2020		10	46
				11/17/2020		7.6	34
				12/01/2020		7.6	35
				12/01/2020		8.6	39
						0.0	39
				Annual Mean Annual Max	6700		
Morouni	EPA 7471A	ma/ka dn.	Plant 1		7700	0.050	0.004
Mercury	EPA /4/1A	mg/kg dry weight		01/28/2020		0.050	0.084
		weight	Dewatering Cake	02/18/2020		0.048	0.080
			Care	02/25/2020		0.047	0.078
				03/17/2020		0.050	0.083
				03/24/2020		0.051	0.084
				04/21/2020		0.058	0.097
				04/28/2020		0.047	0.078
				05/20/2020		0.050	0.083
				05/26/2020		0.048	0.079
				06/02/2020		0.047	0.078
				06/09/2020		0.048	0.080
				07/21/2020		0.048	0.080
				07/28/2020		0.048	0.080
				08/18/2020		0.051	0.085
				08/25/2020		0.051	0.084
				09/15/2020		0.054	0.090
				09/22/2020		0.050	0.083
				10/20/2020		0.049	0.082
				10/27/2020		0.048	0.080
				11/03/2020	0.69	0.050	0.084
				11/17/2020	0.62	0.051	0.084
				12/01/2020	0.69	0.053	0.088
				12/08/2020	0.55	0.047	0.078
				Annual Mean	0.70		
				Annual Max	1.8		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 7471A	mg/kg dry	Plant 2	01/21/2020	0.98	0.33	0.33
		weight	Dewatering	01/28/2020	ND	0.047	0.079
			Cake	02/18/2020	0.95	0.043	0.072
				02/25/2020	0.63	0.044	0.074
				03/17/2020	0.48	0.048	0.080
				03/24/2020	0.67	0.043	0.071
				04/21/2020	0.62	0.061	0.10
				04/28/2020	0.42	0.047	0.078
				05/19/2020	0.60	0.049	0.082
				05/26/2020	0.60	0.046	0.076
				06/02/2020	0.35	0.043	0.072
				06/09/2020	0.46	0.048	0.080
				07/21/2020	0.49	0.043	0.071
				07/28/2020	0.45	0.046	0.077
				08/18/2020	0.41	0.045	0.075
				08/25/2020	0.62	0.044	0.073
				09/15/2020	0.62	0.043	0.072
				09/22/2020	0.74	0.047	0.078
				10/20/2020	0.40	0.043	0.072
				10/27/2020	0.53	0.044	0.074
				11/03/2020	0.36	0.055	0.091
				11/17/2020	0.84	0.042	0.070
				12/01/2020	0.49	0.041	0.069
				12/08/2020	0.38	0.049	0.081
				Annual Mean	0.55 DNQ		
				Annual Max	0.98		
Molybdenum	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	16	0.39	6.7
		weight	Dewatering	01/28/2020	16	0.42	7.3
			Cake	02/18/2020	14	0.73	8.0
				02/25/2020	18	0.71	7.8
				03/17/2020	16	0.44	1.0
				03/24/2020	17	0.43	1.0
				04/21/2020	19	0.51	1.2
				04/28/2020	18	0.41	0.99
				05/20/2020	18	0.41	0.99
				05/26/2020	18	0.41	0.99
				06/02/2020	16	0.40	0.94
				06/09/2020	20	0.42	1.0
				07/21/2020	19	0.41	0.97
				07/28/2020	20	0.42	1.0
				08/18/2020	20	0.44	1.0
				08/25/2020	21	0.44	1.0
				09/15/2020	20	0.46	1.1
				09/22/2020	19	0.44	1.0
				10/20/2020	18	0.20	2.0
				10/27/2020	18	0.20	2.0
				11/03/2020	18	0.21	2.1
				11/17/2020	18	0.20	2.0
				12/01/2020	18	0.21	2.1
				12/08/2020		0.19	1.9
	1	1	1				
				Annual Mean	18		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	16	0.36	6.3
		weight	Dewatering	01/28/2020	16	0.40	7.0
			Cake	02/18/2020	13	0.65	7.1
				02/25/2020	17	0.66	7.2
				03/17/2020	18	0.40	0.96
				03/24/2020	20	0.38	0.90
				04/21/2020	27	0.54	1.3
				04/28/2020	21	0.39	0.94
				05/19/2020	20	0.41	0.98
				05/26/2020	16	0.39	0.92
				06/02/2020	19	0.36	0.85
				06/09/2020	22	0.41	0.97
				07/21/2020	19	0.37	0.88
				07/28/2020	21	0.38	0.91
				08/18/2020	20	0.38	0.91
				08/25/2020	21	0.38	0.90
				09/15/2020		0.37	0.89
				09/22/2020		0.39	0.94
				10/20/2020		0.18	1.8
				10/27/2020		0.18	1.8
				11/03/2020		0.23	2.3
				11/17/2020		0.17	1.7
				12/01/2020		0.17	1.7
				12/08/2020		0.19	1.9
				Annual Mean	19	0.15	1.5
				Annual Max	27		
Nickel	EPA 6010C	mg/kg dry	Plant 1	01/21/2020		0.44	13
NICKEI		weight	Dewatering	01/28/2020		0.48	15
		Weight	Cake	02/18/2020		2.0	8.0
				02/25/2020		2.0	7.8
				03/17/2020		0.74	2.1
				03/24/2020		0.74	2.0
				03/24/2020		0.72	2.0
				04/28/2020		0.70	2.4
				05/20/2020		0.70	2.0
				05/26/2020		0.70	2.0
				06/02/2020		0.67	1.9
				06/09/2020			
				07/21/2020		0.71	2.0 1.9
				07/28/2020		0.69	
				07/28/2020		0.71 0.74	2.0
						0.74	2.1
				08/25/2020		-	2.1
				09/15/2020		0.78	2.2
				09/22/2020		0.74	2.1
				10/20/2020		0.56	2.0
				10/27/2020		0.57	2.0
				11/03/2020		0.60	2.1
				11/17/2020		0.57	2.0
				12/01/2020		0.60	2.1
				12/08/2020		0.53	1.9
				Annual Mean	37		
				Annual Max	47		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	35	0.42	13
		weight	Dewatering	01/28/2020	36	0.46	14
			Cake	02/18/2020	31	1.8	7.1
				02/25/2020	48	1.8	7.2
				03/17/2020	40	0.68	1.9
				03/24/2020	46	0.64	1.8
				04/21/2020	52	0.91	2.6
				04/28/2020	39	0.67	1.9
				05/19/2020	32	0.69	2.0
				05/26/2020	25	0.65	1.8
				06/02/2020	29	0.60	1.7
				06/09/2020	36	0.69	1.9
				07/21/2020	30	0.62	1.8
				07/28/2020	33	0.65	1.8
				08/18/2020	29	0.65	1.8
				08/25/2020	27	0.64	1.8
				09/15/2020	31	0.63	1.8
				09/22/2020		0.67	1.9
				10/20/2020		0.51	1.8
				10/27/2020		0.51	1.8
				11/03/2020		0.64	2.3
				11/17/2020		0.48	1.7
				12/01/2020		0.48	1.7
				12/08/2020		0.55	1.9
				Annual Mean	34		
				Annual Max	52		
Selenium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020		2.9	6.0
		weight	Dewatering	01/28/2020		3.1	6.6
			Cake	02/18/2020		3.8	20
				02/25/2020		3.7	19
				03/17/2020		0.99	2.1
				03/24/2020		0.97	2.0
				04/21/2020		1.2	2.4
				04/28/2020		0.94	2.0
				05/20/2020		0.94	2.0
				05/26/2020		0.94	2.0
				06/02/2020		0.90	1.9
				06/09/2020		0.95	2.0
				07/21/2020		0.93	1.9
				07/28/2020		0.95	2.0
				08/18/2020		0.99	2.1
				08/25/2020		1.0	2.1
				09/15/2020		1.0	2.2
				09/22/2020		1.0	2.1
				10/20/2020		1.0	2.0
				10/27/2020		1.0	2.0
				11/03/2020		1.0	2.0
				11/17/2020		1.0	2.0
				12/01/2020		1.0	2.0
				12/08/2020		0.94	1.9
				Annual Mean	3.9 DNQ	0.04	1.3
				Annual Max	13		
					13		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	11	2.7	5.7
		weight	Dewatering	01/28/2020	12	3.0	6.3
			Cake	02/18/2020	ND	3.3	18
				02/25/2020	ND	3.4	18
				03/17/2020	ND	0.91	1.9
				03/24/2020	ND	0.86	1.8
				04/21/2020	ND	1.2	2.6
				04/28/2020	ND	0.89	1.9
				05/19/2020	ND	0.93	2.0
				05/26/2020	ND	0.88	1.8
				06/02/2020	ND	0.81	1.7
				06/09/2020	ND	0.92	1.9
				07/21/2020	ND	0.84	1.8
				07/28/2020	ND	0.87	1.8
				08/18/2020	ND	0.87	1.8
				08/25/2020	ND	0.86	1.8
				09/15/2020	ND	0.84	1.8
				09/22/2020	ND	0.89	1.9
				10/20/2020	6.8	0.90	1.8
				10/27/2020	6.9	0.91	1.8
				11/03/2020	7.7	1.1	2.3
				11/17/2020	4.6	0.85	1.7
				12/01/2020	8.3	0.85	1.7
				12/08/2020	8.4	0.96	1.9
				Annual Mean	3.5 DNQ		
				Annual Max	12		
Silver	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	5.2	0.54	3.3
		weight	Dewatering	01/28/2020	4.7	0.58	3.7
			Cake	02/18/2020	3.4 DNQ	0.46	10
				02/25/2020	2.8 DNQ	0.45	9.7
				03/17/2020	4.0	0.50	1.7
				03/24/2020	4.6	0.49	1.6
				04/21/2020	3.3	0.59	1.9
				04/28/2020	5.1	0.48	1.6
				05/20/2020	3.1	0.48	1.6
				05/26/2020	2.8	0.48	1.6
				06/02/2020	5.8	0.46	1.5
				06/09/2020	3.2	0.48	1.6
				07/21/2020	2.9	0.47	1.6
				07/28/2020	3.4	0.48	1.6
				08/18/2020	2.5	0.50	1.7
				08/25/2020	3.6	0.51	1.7
				09/15/2020	3.7	0.53	1.8
				09/22/2020		0.51	1.7
				10/20/2020		0.050	1.6
				10/27/2020	3.1	0.050	1.6
				11/03/2020		0.053	1.7
				11/17/2020		0.051	1.6
				12/01/2020		0.053	1.7
				12/08/2020		0.047	1.5
				Annual Mean	3.6 DNQ	-	-

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	3.5	0.51	3.2
		weight	Dewatering	01/28/2020	4.1	0.56	3.5
			Cake	02/18/2020	2.8 DNQ	0.41	8.9
				02/25/2020	2.6 DNQ	0.42	9.0
				03/17/2020	4.0	0.47	1.5
				03/24/2020	4.4	0.44	1.4
				04/21/2020	5.2	0.63	2.1
				04/28/2020	4.0	0.45	1.5
				05/19/2020	3.5	0.47	1.6
				05/26/2020	2.8	0.45	1.5
				06/02/2020		0.41	1.4
				06/09/2020		0.47	1.6
				07/21/2020		0.43	1.4
				07/28/2020		0.44	1.5
				08/18/2020		0.44	1.5
				08/25/2020		0.44	1.4
				09/15/2020		0.43	1.4
				09/22/2020		0.45	1.5
				10/20/2020		0.045	1.5
				10/27/2020		0.046	1.5
				11/03/2020		0.057	1.8
				11/17/2020		0.043	1.4
				12/01/2020		0.043	1.4
				12/08/2020		0.049	1.6
				Annual Mean	3.3 DNQ		
				Annual Max	5.2		
Thallium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	-	2.2	4.4
		weight	Dewatering	04/21/2020		0.75	1.2
		0	Cake	07/21/2020		0.60	0.97
				10/20/2020		0.49	1.0
				Annual Mean	1.2 DNQ		
				Annual Max	1.1		
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020	ND	2.1	4.1
		weight	Dewatering	04/21/2020		0.80	1.3
			Cake	07/21/2020		0.54	0.88
				10/20/2020		0.45	0.91
				Annual Mean	1.2 DNQ		
				Annual Max	1.4	_	
Vanadium	EPA 6010C	mg/kg dry	Plant 1	01/21/2020		0.31	6.7
		weight	Dewatering	07/21/2020		0.26	0.97
			Cake	Annual Mean	27		
				Annual Max	28	_	
	EPA 6010C	mg/kg dry	Plant 2	01/21/2020		0.30	6.3
		weight	Dewatering	07/21/2020		0.23	0.88
			Cake	Annual Mean	83		
				Annual Max	87		
	<u>l</u>				51		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Zinc	EPA 6010C	mg/kg dry	Plant 1	01/21/2020	780	1.3	10
		weight	Dewatering	01/28/2020	820	1.5	11
			Cake	02/18/2020	650	8.0	20
				02/25/2020	710	3.3	19
				03/17/2020	670	3.6	21
				03/24/2020	830	3.5	20
				04/21/2020	780	4.2	24
				04/28/2020		3.4	20
				05/20/2020		3.4	20
				05/26/2020		3.4	20
				06/02/2020		3.2	19
				06/09/2020		3.4	20
				07/21/2020		3.3	19
				07/28/2020		3.4	20
				08/18/2020		3.6	20
				08/25/2020		3.6	21
				09/15/2020		3.8	21
							22
				09/22/2020		3.6	
				10/20/2020		3.4	20
				10/27/2020		3.5	20
				11/03/2020		3.7	21
				11/17/2020		3.5	20
			Plant 2	12/01/2020		3.7	21
				12/08/2020		3.2	19
				Annual Mean	780		
				Annual Max	900		
	EPA 6010C	mg/kg dry	dry Plant 2 Dewatering Cake	01/21/2020		1.3	9.5
		weight		01/28/2020		1.4	11
				02/18/2020		7.1	18
				02/25/2020	660	3.1	18
				03/17/2020	720	3.3	19
				03/24/2020	780	3.1	18
				04/21/2020	960	4.4	26
				04/28/2020	810	3.2	19
				05/19/2020	850	3.4	20
				05/26/2020	630	3.2	18
				06/02/2020		2.9	17
				06/09/2020		3.3	19
				07/21/2020		3.0	18
				07/28/2020		3.1	18
				08/18/2020		3.1	18
				08/25/2020		3.1	18
				09/15/2020		3.0	18
				09/22/2020		3.2	19
				10/20/2020		3.1	18
				10/27/2020		3.1	18
				11/03/2020		3.9	23
				11/17/2020		2.9	17
				12/01/2020		3.0	17
				12/08/2020		3.3	19
				Annual Mean	750		
				Annual Max	960		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Volatile Organic (Compounds						
1,1,1,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
Tetrachloroethane		100	Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	1000	2600
			Dewatering	07/21/2020	ND	550	1400
			Cake	11/03/2020	ND	1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
,1,1-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
richloroethane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		100	Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	520	1000
			Dewatering	07/21/2020	ND	280	550
			Cake	11/03/2020	ND	620	1200
				Annual Mean	<620		
				Annual Max	<620		
1,1,2,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
etrachloroethane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
				Annual Max	<780	_	
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		1.9.1.9	Dewatering	Annual Mean	<1.6	-	
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		1200
				Annual Max	<620		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
1,1,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Trichloroethane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
		1.2.2.2	Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780	100	
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		µg/kg	Dewatering	Annual Mean	<1.6	1.0	5.2
			Cake				
				Annual Max	<1.6	500	4000
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
,1-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dichloroethane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		P9/19	Dewatering	Annual Mean	<1.6	1.0	0.2
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		µg/kg ury	Dewatering	07/21/2020		280	550
			Cake				-
			Care	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
,1-	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
Dichloroethene			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2600
		r 3, 1 3 0 7	Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200	1200	5100
4		1.0.1.0	Diart 1	Annual Max	<1200	00	100
,1-	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
Dichloropropene			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
	µg/kg dry	Plant 1	01/21/2020		440	890	
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	3.2
		100	Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		P.9.19	Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620	020	1200
				Annual Max	<620		
0.0			Diant 1			400	450
,2,3- richlorobenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
nchiorobenzene			Dewatering Cake	Annual Mean	<180		
				Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020		890	2200
			Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2600
		pg/rg ary	Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
			Callo	Annual Mean		1200	3100
					<1200		
				Annual Max	<1200		
,2,3-	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	900
richloropropane			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	4400
			Dewatering	07/28/2020	ND	910	4600
			Cake	11/03/2020	ND	1600	7800
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	16
		P9/19	Dewatering	Annual Mean	<1.6	1.0	10
			Cake	Annual Max	<1.6		
						1000	5000
		µg/kg dry	Plant 2	01/21/2020		1000	5200
			Dewatering	07/21/2020		550	2800
			Cake	11/03/2020		1200	6200
				Annual Mean	<1200		
				Annual Max	<1200		
,2,4-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
richlorobenzene			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
		1.2.2.2	Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
			-	Annual Mean	<1600		0000
				Annual Max	<1600		
		1.0.1	Diart 0			1.0	0.4
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2600
			Dewatering	07/21/2020	ND	550	1400
			Cake	11/03/2020	ND	1200	3100
				Annual Mean	<1200		Í
				Annual Max	<1200		-

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
1,2,4-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Trimethylbenzene			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		pg/kg	Dewatering	Annual Mean	110	1.0	0.2
			Cake	Annual Max	110		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		μα/και αι γ					-
			Dewatering Cake	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
,2-Dibromo-3-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
hloropropane			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		3.2	8.1
		P9/19	Dewatering	Annual Mean	<3.2	0.2	0.1
			Cake	Annual Max	<3.2		
		ua/ka dav				1000	2600
		µg/kg dry	Plant 2	01/21/2020		1000	2600
			Dewatering Cake	07/21/2020		550	1400
			ŀ	11/03/2020		1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dibromoethane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		M9/119	Dewatering	Annual Mean	<1.6	1.0	0.2
			Cake	Annual Max	<1.6		
						520	1000
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering Cake	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dichlorobenzene			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
	µg/kg dry	Plant 1	01/21/2020		440	890	
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	3.2
		pg/kg	Dewatering	Annual Mean	<1.6	1.0	0.2
			Cake	Annual Max	<1.6		
		ug/kg dp/	Plant 2	01/21/2020		520	1000
		µg/kg dry	Dewatering				
			Cake	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
1,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
Dichloroethane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		P9/119	Dewatering	Annual Mean	<1.6	1.0	0.2
			Cake	Annual Max	<1.6		
		ug/kg dp/	Plant 2	01/21/2020		520	1000
		µg/kg dry					
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dichloropropane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	ua/ka	Plant 2	04/22/2020		1.6	3.2
	EFA 0200D	µg/kg				1.0	3.2
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020	ND	620	1200
				Annual Mean	<620		
				Annual Max	<620		
1,3,5-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	360
Frichlorobenzene			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020		890	1800
		~ 3 [,] 1 3 0 1 3	Dewatering	07/28/2020		910	1800
			Cake	11/03/2020		1600	3100
				Annual Mean	<1600	1000	5100
			Diarst O	Annual Max	<1600	4.0	2.0
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2100
			Dewatering	07/21/2020	ND	550	1100
			Cake	11/03/2020	ND	1200	2500
				Annual Mean	<1200		
				Annual Max	<1200		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
1,3,5-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Trimethylbenzene			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
	LI A 0200D	µg/kg		Annual Mean	34	1.0	5.2
			Cake	Annual Max	34		
		un dur dur d	Plant 2			500	1000
		µg/kg dry		01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
	EPA 8260B			Annual Max	<620		
,3-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dichlorobenzene			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
	LI A 0200D	µg/kg	Dewatering Cake	Annual Mean	<1.6	1.0	5.2
				Annual Max	<1.6	500	4000
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
,3-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dichloropropane			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		1000
				Annual Max	<780	-	
	EPA 8260B		Plant 2	04/22/2020		1.6	3.2
	LI'A OZUUD	µg/kg	Dewatering	Annual Mean		1.0	3.2
			Cake		<1.6		
				Annual Max	<1.6	500	1005
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
1,4- Dichlorobenzene				Annual Mean	<620		
				Annual Max	<620		
	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
		1 3 1 3 0 9	Dewatering	07/28/2020		460	910
				11/03/2020		780	1600
		(Cake	11/03/2020		100	1000
				Annual Mean	<780		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	3.2
		P9/19	Dewatering	Annual Mean	<1.6	1.0	0.2
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		µg/kg ury	Dewatering	07/21/2020		280	550
			Cake				
			Care	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
2,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	360
Dichloropropane			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	1800
			Dewatering	07/28/2020	ND	910	1800
			Cake	11/03/2020	ND	1600	3100
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	3.2
			Dewatering	Annual Mean	<1.6	-	
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2100
		µg/kg ury	Dewatering	07/21/2020		550	1100
			Cake				
			Care	11/03/2020		1200	2500
2-Chlorotoluene				Annual Mean	<1200		
				Annual Max	<1200		
	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
		µg/кg	Dewatering	Annual Mean	<1.6	1.0	0.1
			Cake		<1.6		
				Annual Max		4000	0000
		µg/kg dry	Plant 2	01/21/2020		1000	2600
			Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
2-Hexanone	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	900	2200
			Dewatering	Annual Mean	<900		
			Cake	Annual Max	<900		
		µg/kg dry	Plant 1	01/21/2020		4400	11000
			Dewatering	07/28/2020		4600	11000
			Cake	11/03/2020		7800	19000
				Annual Mean	<7800		
				Annual Max	<7800		
	EPA 8260B	ua/ka	Plant 2	04/22/2020		8.1	40
	LITA OZUUD	µg/kg	Dewatering			0.1	40
			-	Annual Mean	<8.1		
			Cake	Annual Max	<8.1		10000
		µg/kg dry	Plant 2	01/21/2020		5200	13000
			Dewatering	07/21/2020		2800	6900
			Cake	11/03/2020		6200	16000
				Annual Mean	<6200		
	1			Annual Max	<6200		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
4-Chlorotoluene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	450
		r9/19	Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	2200
		~ <u>9</u> , <u>9</u> ,	Dewatering	07/28/2020		460	2300
			Cake	11/03/2020		780	3900
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
	217102000	M9/119		Annual Mean	<1.6	1.0	0.1
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	2600
		µg/kg ury	Dewatering	07/21/2020		280	1400
			Cake	11/03/2020		620	3100
				Annual Mean	<620	020	5100
				Annual Max	<620 <620		
Acrolein		ug/kg	Plant 1	04/22/2020		2600	0000
Acrolein	EPA 8260B	µg/kg	Dewatering			3600	9000
			Cake	Annual Mean	<3600		
		(1 1		Annual Max	<3600	40000	44000
		µg/kg dry	Plant 1	01/21/2020		18000	44000
		Dewatering	07/28/2020		18000	46000	
			Cake	11/03/2020		31000	78000
				Annual Mean	<31000		
			-	Annual Max	<31000		
	EPA 8260B	µg/kg	Plant 2 Dewatering	04/22/2020		16	160
				Annual Mean	<16		
			Cake	Annual Max	<16		
		µg/kg dry	Plant 2 Dewatering	01/21/2020		21000	52000
				07/21/2020		11000	28000
			Cake	11/03/2020	ND	25000	62000
				Annual Mean	<25000		
				Annual Max	<25000		
Acrylonitrile	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	1800	9000
			Dewatering	Annual Mean	<1800		
			Cake	Annual Max	<1800		
		µg/kg dry	Plant 1	01/21/2020	ND	8900	44000
			Dewatering	07/28/2020	ND	9100	46000
			Cake	11/03/2020	ND	16000	78000
				Annual Mean	<16000		
EPA 8260				Annual Max	<16000		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		32	160
			Dewatering	Annual Mean	<32		
			Cake	Annual Max	<32		
		µg/kg dry	Plant 2	01/21/2020		10000	52000
		1.5.5.5	Dewatering	07/21/2020		5500	28000
			Cake	11/03/2020		12000	62000
				Annual Mean	<12000		02000
			A		12000		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Benzene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Bonzono		P9/119	Dewatering	Annual Mean	<90		100
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
		µg/ng ary	Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780	100	1000
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		P9/119	Dewatering	Annual Mean	<1.6		0.2
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		pg/kg ary	Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620	020	1200
				Annual Max	<620		
Bromobenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
Siomoberizene		μg/kg	Dewatering	Annual Mean	<180	100	430
			Cake	Annual Max	<180		
		µg/kg dry		01/21/2020		890	2200
			y Plant 1 Dewatering Cake			910	2200
				07/28/2020			
				11/03/2020		1600	3900
				Annual Mean	<1600		
		//		Annual Max	<1600	1.0	0.4
	EPA 8260B	60B µg/kg	Plant 2	04/22/2020		1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Dewatering	01/21/2020		1000	2600
				07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
Bromochlorometh	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
ane			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020		890	2200
			Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
				Annual Mean	<1600		
EPA 826				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	1000	2600
			Dewatering	07/21/2020	ND	550	1400
			Cake	11/03/2020	ND	1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Bromodichloromet	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
hane		P9/119	Dewatering	Annual Mean	<90	00	
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
		µg/kg ary	Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780	700	1000
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		µg/kg		Annual Mean	<1.6	1.0	5.2
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		µg/kg ury	Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
			Cuito	Annual Mean		620	1200
					<620		
			Disut 4	Annual Max	<620	400	450
Bromoform	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
			Dewatering Cake	Annual Mean	<180		
				Annual Max	<180	000	0000
		µg/kg dry	Plant 1	01/21/2020		890	2200
			Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
F				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2 Dewatering	04/22/2020	ND	3.2	8.1
				Annual Mean	<3.2		
			Cake	Annual Max	<3.2		
		µg/kg dry	Plant 2	01/21/2020	ND	1000	2600
			Dewatering	07/21/2020	ND	550	1400
			Cake	11/03/2020	ND	1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
Bromomethane	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
		F 3 - 3	Dewatering Cake	Annual Mean	<180		
				Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020		890	2200
		13 3 5	Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
		-9-9	Dewatering	Annual Mean	<1.6		0.1
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2600
		Maying only	Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
Carbon etrachloride			20.10	Annual Mean	<1200	1200	5100
				Annual Max	<1200	_	
	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
		hð\vð	Dewatering	Annual Mean	<180	100	400
			Cake				
				Annual Max	<180	900	2200
		µg/kg dry	Plant 1	01/21/2020		890	2200
			Dewatering Cake	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location	0.4/00/0000	ND	4.0	0.4
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2600
			Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
Chlorobenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		μg/kg	Dewatering	Annual Mean	<1.6	1.0	0.2
			Cake	Annual Max	<1.6		
		ug/kg dg/	Plant 2			520	1000
		µg/kg dry		01/21/2020			
Chloroethane EPA 82			Dewatering Cake	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
			-	Annual Max	<620		
	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	3.2	8.1
		μg/kg	Dewatering	Annual Mean	<3.2		
			Cake	Annual Max	<3.2		
		µg/kg dry	Plant 2	01/21/2020	-	1000	2600
		pg/ng ory	Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200	1200	5100
				Annual Max	<1200		
Chloroform	EPA 8260B	ua/ka	Plant 1	04/22/2020		90	180
	EFA 0200D	µg/kg	Dewatering			90	100
			Cake	Annual Mean	<90		
		//		Annual Max	<90	4.40	000
		µg/kg dry	Plant 1	01/21/2020		440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
EPA 82608				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	520	1000
			Dewatering	07/21/2020	ND	280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620	_	

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Chloromethane	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
Chioronneuriane	LFA 0200D	µy/ky	Dewatering	Annual Mean	<180	100	450
			Cake	Annual Max	<180		
		ug/kg dg/	Plant 1			800	2200
		µg/kg dry		01/21/2020		890	2200
			Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	1000	2600
			Dewatering	07/21/2020	ND	550	1400
			Cake	11/03/2020	ND	1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
cis-1,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
Dichloroethene		P9/119	Dewatering	Annual Mean	<90	00	100
			Cake	Annual Max	<90		
						440	000
		µg/kg dry	Plant 1	01/21/2020		440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
-				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2 Dewatering	04/22/2020	ND	1.6	3.2
				Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620	020	1200
				Annual Max	<620		
cis-1,3-	EPA 8260B		Plant 1	04/22/2020		90	180
•	EPA 0200D	µg/kg	Dewatering			90	160
Dichloropropene				Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	3.2
			Dewatering	Annual Mean	<1.6	1	
			Cake	Annual Max	<1.6		1
		µg/kg dry	Plant 2	01/21/2020		520	1000
		~ 3 [,] 1 3 0 1 3	Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
Dibromochlorome thane			Cano			020	1200
				Annual Mean	<620		
				Annual Max	<620	0.0	466
	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
		1	1		<780	(

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
	EPA 8260B	ua/ka	Plant 2	04/22/2020	ND	1.6	3.2
	EFA 0200D	µg/kg	Dewatering	Annual Mean	<1.6	1.0	3.2
			Cake		-		
				Annual Max	<1.6	500	4000
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
Dibromomethane	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
	EPA 8260B	P9/19	Dewatering	Annual Mean	<1.6	1.0	0.2
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		µg/kg ury	Dewatering				
			Cake	07/21/2020		280	550
			Cake	11/03/2020		620	1200
Dichlorodifluorom E ethane				Annual Mean	<620		
				Annual Max	<620		
	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		3.2	8.1
		µg/кg	Dewatering	Annual Mean	<3.2	0.2	0.1
			Cake		<3.2		
		un lun dur i		Annual Max		1000	2000
		µg/kg dry	Plant 2	01/21/2020		1000	2600
			Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
Ethylbenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780	_	
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
		P9''9	Dewatering	Annual Mean	11		0.2
			Cake	Annual Max	11		
		under der				500	1000
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering Cake	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
		1	1	Annual Max	<620		1

Hexachlorobutadi ene EPA 8260B μg/kg Plant 1 Dewatering Cake 04/22/2020 ND 180 μg/kg dry EPA 8260B μg/kg dry Plant 2 Dewatering Cake Plant 1 Dewatering Cake 01/21/2020 ND 910 EPA 8260B μg/kg dry Plant 2 Plant 2 Dewatering Cake 04/22/2020 ND 1600 Annual Max <160 Annual Max <160 Annual Max 1600 Annual Max <160 Annual Max <160 Annual Max 16 Mg/kg dry Plant 2 Dewatering Cake 01/21/2020 ND 1500 Isobutyl alcohol EPA 8260B µg/kg dry Plant 1 04/22/2020 ND 2000 Isobutyl alcohol EPA 8260B µg/kg dry Plant 1 04/22/2020 ND 2000 Isobutyl alcohol EPA 8260B µg/kg dry Plant 1 04/22/2020 ND 2000 Isobutyl alcohol EPA 8260B µg/kg dry Plant 2 04/22/2020 ND 2000 Isopropylbenzene EPA 8260B µg/kg	Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
enenumal Max<180ug/kg dryPlan1 Dewatering Cake07/26/2020 ND89007/26/2020 ND10091007/26/2020 ND10091007/26/2020 ND10091007/26/2020 ND10010Annual Max<1600	Hexachlorobutadi	EPA 8260B	ua/ka		04/22/2020	ND	180	450
Image: space			P-9/119					
Image: second				-				
Isobutyl alcohol EPA 8260B µg/kg Plant 2 04/22/2020 ND 1600 µg/kg Plant 2 04/22/2020 ND 1600 µg/kg dry Plant 2 04/22/2020 ND 1600 µg/kg dry Plant 2 04/22/2020 ND 16 µg/kg dry Plant 2 04/22/2020 ND 1000 01/21/2020 ND 1000 07/21/2020 ND 1000 01/21/2020 ND 1000 07/21/2020 ND 1000 01/21/2020 ND 1000 07/21/2020 ND 1000 04/22/020 ND 4500 110/32/2020 ND 4500 10/12/1/2020 ND 22000 07/28/2020 ND 39000 11/03/2020 ND 400 400 400 400 Annual Maa <400			ua/ka dry				800	2200
Image: second			µg/kg ury					2300
Isobutyl alcoholEPA 8260Bµg/kg µg/kg dry µg/kg dryPlant 2 Dewatering CakeAnnual Max<160<160µg/kg dry µg/kg dryPlant 2 Dewatering CakeAnnual Max<1.6								
Part of the section				Cake			1600	3900
EPA 8260B µg/kg Plant 2 Dewatering Cake 04/22/2020 ND 1.6 µg/kg dry µg/kg dry Plant 2 Dewatering Cake 01/21/2020 ND 1000 1000 2000 1000 1200 1000 1003/2020 ND 1200 1003/2020 ND 1200 1003/2020 ND 4500 10/3/2020 ND 22000 Annual Max <4500								
Isobart Isobart <thisobart< th=""> <thisobart< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></thi<></thisobart<></thisobart<>							_	
Isobutyl alcohol EPA 8260B µg/kg dry µg/kg dry participart Plant 2 Plant 2 Plant 2 O1/21/2020 ND ND 1000 10/21/2020 ND Isobutyl alcohol EPA 8260B µg/kg dry µg/kg dry Plant 1 Dewatering Cake 04/22/2020 ND 4500 µg/kg dry µg/kg dry Plant 1 Dewatering Cake 04/22/2020 ND 4500 µg/kg dry Plant 2 Plant 1 01/21/2020 ND 22000 Annual Max <4500		EPA 8260B	10.0				1.6	8.1
Isobutyl alcohol EPA 8260B µg/kg dry µg/kg dry µg/kg dry Plant 2 Dewatering Cake Intentional 07/21/2020 ND 550 Isobutyl alcohol EPA 8260B µg/kg Plant 1 04/22/2020 ND 4500 µg/kg dry Plant 1 04/22/2020 ND 4500 2000 µg/kg dry Plant 1 01/21/2020 ND 2000 2000 Annual Mean <4500				0	Annual Mean	<1.6		
Isobutyl alcohol EPA 8260B µg/kg Plant 1 04/22/2020 ND 4500 Isobutyl alcohol EPA 8260B µg/kg dry Plant 1 04/22/2020 ND 22000 µg/kg dry Plant 1 04/22/2020 ND 22000 2000 20000 µg/kg dry Plant 1 01/21/2020 ND 20000				Cake	Annual Max	<1.6		
Isobutyl alcohol EPA 8260B µg/kg Plant 1 Dewatering Cake 04/22/2020 ND 4500 Isobutyl alcohol EPA 8260B µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 4500 µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 22000 Annual Maa <4500			µg/kg dry	Plant 2	01/21/2020	ND	1000	2600
Isobutyl alcohol EPA 8260B µg/kg Plant 1 Dewatering Cake 04/22/202 ND 4500 hyg/kg dry Plant 1 Dewatering Cake 04/22/202 ND 22000 hyg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 22000 hyg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 23000 Annual Maa <39000				Dewatering	07/21/2020	ND	550	1400
Isobutyl alcohol EPA 8260B µg/kg Plant 1 Dewatering Cake 04/22/2020 ND 4500 µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 22000 FPA 8260B µg/kg dry Plant 2 Dewatering Cake 01/21/2020 ND 23000 Annual Mean <4500				Cake	11/03/2020	ND	1200	3100
Isobutyl alcohol EPA 8260B µg/kg (M) Plant 1 Dewatering Cake Annual Max <1200 ND 4500 µg/kg dry Plant 1 Dewatering Cake Annual Max <4500								
Isobutyl alcohol EPA 8260B µg/kg Plant 1 Dewatering Cake 04/22/2020 ND 4500 µg/kg dry Plant 1 Dewatering Cake 04/22/2020 ND 22000 µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 23000 07/28/2020 ND 23000 39000 Annual Mean <39000							_	
Image: series Image: series Dewatering (Cake) Annual Maan <4500 Annual Maan <4500 µg/kg dry µg/kg dry Plant 1 Dewatering (Cake) 01/21/2020 ND 23000 07/28/2020 ND 39000 Annual Mean <39000	a a hutul alaa hal		ua/ka	Diant 1			4500	9000
kink kink <th< td=""><td>SUDULY AICONU</td><td></td><td>ру/ку</td><td></td><td></td><td></td><td>4000</td><td>9000</td></th<>	SUDULY AICONU		ру/ку				4000	9000
Image: space								
kernel kernel 11/03/2020 ND 39000 Annual Mean -39000			µg/kg dry					44000
kincles kincles <t< td=""><td></td><td></td><td></td><td></td><td>07/28/2020</td><td>ND</td><td>23000</td><td>46000</td></t<>					07/28/2020	ND	23000	46000
NumberNumberAnnual Max<39000Image: Annual Max<39000Image: Annual MaxEPA 8260Bµg/kg dry µg/kg dryPlant 2 Dewatering Cake04/22/2020ND40 Annual Max<40				Cake	11/03/2020	ND	39000	78000
FPA 8260B watering Cakeµg/kg Dewatering CakePlant 2 Dewatering Cake04/22/2020 Annual MaxND40µg/kg dry pewatering CakePlant 2 Dewatering Cake01/21/2020 01/21/2020 NDND26000 26000 11/03/2020 ND31000sopropylbenzene sopropylbenzeneFPA 8260Bµg/kg µg/kg dry µg/kg dry µg/kg dry µg/kg dry µg/kg dry µg/kg dry µg/kg dry µg/kg dry Plant 1 Dewatering CakePlant 1 04/22/2020 ND04/22/2020 ND90Annual Max Annual Max<90					Annual Mean	<39000		
FPA 8260B watering Cakeµg/kg Dewatering CakePlant 2 Dewatering Cake04/22/2020 Annual MaxND40µg/kg dry proprisionPlant 2 Dewatering Cake01/21/2020 01/21/2020 NDND26000 1400007/21/2020 Annual MaxND31000 400011/03/2020 1000ND31000 1000sopropylbenzene sopropylbenzeneFPA 8260Bµg/kg µg/kg dry µg/kg dry µg/kg dryPlant 1 Dewatering Cake04/22/2020 Annual Max9090Annual Max<90	-				Annual Max	<39000		
Isopropylbenzene m,p-Xylenes EPA 8260B µg/kg dry µg/kg dry Plant 2 Plant 2 Dewatering Cake Annual Mean 4000 <40000 Isopropylbenzene m,p-Xylenes EPA 8260B µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 31000 Isopropylbenzene m,p-Xylenes EPA 8260B µg/kg dry Plant 1 Dewatering Cake 04/22/2020 ND 90 Isopropylbenzene m,p-Xylenes EPA 8260B µg/kg dry Plant 1 Dewatering Cake 04/22/2020 ND 440 Isopropylbenzene Image and the second		EPA 8260B	ua/ka	Plant 2	04/22/2020		40	81
kink kink <th< td=""><td></td><td>1.2.1.2</td><td rowspan="2">v</td><td></td><td></td><td></td><td></td></th<>			1.2.1.2	v				
No. No. <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td>						-	_	
Isopropylbenzene EPA 8260B µg/kg Plant 1 04/22/2020 ND 14000 Isopropylbenzene EPA 8260B µg/kg Plant 1 04/22/2020 ND 90 µg/kg dry Plant 1 04/22/2020 ND 440 µg/kg dry Plant 1 04/22/2020 ND 440 µg/kg dry Plant 1 01/21/2020 ND 460 11/03/2020 ND 780 780 780 Annual Mean <780			ua/ka dry			-	26000	52000
Image: series of the seciency of the secience of the seciency of the seciency of the seciency of the se			µg/kg diy					
Isopropylbenzene EPA 8260B µg/kg Plant 1 Dewatering Cake 04/22/2020 Annual Max ND 90 µg/kg dry Plant 1 Dewatering Cake 04/22/2020 ND 90 µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 440 07/28/2020 ND 460 11/03/2020 ND 460 Cake 01/21/2020 ND 460 11/03/2020 ND 460 Cake 10/03/2020 ND 780 100 780 100 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>28000</td></t<>								28000
Isopropylbenzene EPA 8260B µg/kg Plant 1 Dewatering Cake 04/22/2020 ND 90 µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 440 µg/kg dry Plant 1 Dewatering Cake 01/21/2020 ND 460 1/03/2020 ND 780 780 Annual Mean <780				Cake			31000	62000
Isopropylbenzene normalization (Section (Se								
picked picked picked Annual Mean <90 Image: Marked Mean					Annual Max	<31000		
k Cake Annual Max <90 Image: second s	sopropylbenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Dewatering	Annual Mean	<90		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Cake	Annual Max	<90		
$ \begin{tabular}{ c c c c c } \hline \end{tabular} & tabular$			µg/kg dry	Dewatering	01/21/2020	ND	440	890
$ \begin{tabular}{ c c c c c c } & \ & \ & \ & \ & \ & \ & \ & \ & \ & $								910
$ \begin{tabular}{ c c c c c c } \hline \end{tabular} & $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $								1600
$ \begin{tabular}{ c c c c c c c } \hline \end{tabular} & tab$								1000
$ \begin{tabular}{ c c c c c c } FPA 8260B & \mug/kg & \mug/kg & Plant 2 & 04/22/2020 & 1.9 \ DNQ & 1.6 \\ \hline Annual Mean & 1.9 \ DNQ & 200 & 1.9 \ DNQ & 200 & 2$							-	
No. Dewatering Cake Annual Mean 1.9 DNQ Image: Cake Annual Max 1.9 DNQ Image: Cake Image:			ua/ka	Diant 2			1.6	2.0
$ \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			µу/ку				1.0	3.2
$ \begin{tabular}{ c c c c c c c } & \mu g/kg dry $				-				
m.p-Xylenes EPA 8260B µg/kg Plant 1 04/22/2020 ND 280 µg/kg dry Plant 1 04/22/2020 ND 620 620 Annual Max <620				Care	Annual Max	1.9 DNQ		
m.p-Xylenes EPA 8260B µg/kg Plant 1 04/22/2020 ND 280 µg/kg dry Plant 1 04/22/2020 ND 620 620 Annual Max <620			ua/ka dry	Plant 2	01/21/2020	ND	520	1000
Key Cake 11/03/2020 ND 620 Annual Mean <620			Pg/ng ury					550
Mnnual Mean <620 Annual Max <620				•				_
Matrix Main Max <620 Main Max <620<				Care			020	1200
m,p-Xylenes	m,p-Xylenes							
Dewatering Cake Annual Mean <180 μg/kg dry Plant 1 01/21/2020 ND 890								
Cake Annual Max <180 μg/kg dry Plant 1 01/21/2020 ND 890		EPA 8260B	µg/kg				180	360
μg/kg dry Plant 1 01/21/2020 ND 890				-	Annual Mean			
				Cake	Annual Max	<180		
			µg∕kg dry	Plant 1	01/21/2020	ND	890	1800
				Dewatering			910	1800
Cake 11/03/2020 ND 1600								3100
Annual Mean <1600							1000	0100
Annual Max <1600								

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
	EPA 8260B	µg/kg	Plant 2	04/22/2020	44	3.2	6.5
		10 0	Dewatering	Annual Mean	44		
			Cake	Annual Max	44		
		µg/kg dry	Plant 2	01/21/2020	ND	1000	2100
			Dewatering	07/21/2020	ND	550	1100
			Cake	11/03/2020		1200	2500
				Annual Mean	<1200	.200	2000
				Annual Max	<1200		
Methyl ethyl	EPA 8260B	µg/kg	Plant 1	04/22/2020		900	1800
ketone		pg/kg	Dewatering	Annual Mean	<900	300	1000
			Cake	Annual Max	<900		
		µg/kg dry	Plant 1	01/21/2020		4400	8900
		µg/kg ury	Dewatering			4400	9100
			Cake	07/28/2020			-
			Care	11/03/2020		7800	16000
				Annual Mean	<7800		
				Annual Max	<7800		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		12	25
			Dewatering	Annual Mean	720		
			Cake	Annual Max	720		
		µg/kg dry	Plant 2	01/21/2020	ND	5200	10000
			Dewatering	07/21/2020		2800	5500
Methylene EPA 8260B			Cake	11/03/2020	ND	6200	12000
				Annual Mean	<6200		
				Annual Max	<6200		
	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	900	1800
Chloride			Dewatering	Annual Mean	<900		
JIIIOHUE			Cake	Annual Max	<900		
		µg/kg dry	Plant 1	01/21/2020	ND	4400	8900
			Dewatering	07/28/2020	ND	4600	9100
			Cake	11/03/2020		7800	16000
				Annual Mean	<7800		
				Annual Max	<7800		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		8.1	32
		µg∕кg	Dewatering Cake	Annual Mean	<8.1	0.1	02
				Annual Max	<8.1		
		ug/kg dp/			-	5200	10000
		µg/kg dry	Plant 2 Dewatering	01/21/2020			10000
			Cake	07/21/2020		2800	5500
			Care	11/03/2020		6200	12000
				Annual Mean	<6200		
				Annual Max	<6200	000	000
MIBK	EPA 8260B	µg/kg	Plant 1	04/22/2020		360	900
			Dewatering	Annual Mean	<360		
			Cake	Annual Max	<360		
		µg/kg dry	Plant 1	01/21/2020		1800	4400
			Dewatering	07/28/2020		1800	4600
			Cake	11/03/2020		3100	7800
EPA 826				Annual Mean	<3100		
				Annual Max	<3100		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	4.0	8.1
			Dewatering	Annual Mean	<4.0		
			Cake	Annual Max	<4.0		
		µg/kg dry	Plant 2	01/21/2020		2100	5200
			Dewatering	07/21/2020		1100	2800
			Cake	11/03/2020		2500	6200
		C		Annual Mean	<2500		
			A				

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Naphthalene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
			Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020		890	2200
		µg,g,	Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		3.2	8.1
		1.2.1.2		Annual Mean	19		
			Cake	Annual Max	19		
		µg/kg dry	Plant 2	01/21/2020		1000	2600
		µg/ng ary	Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200	1200	0100
				Annual Max	<1200		
n-Butylbenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020		180	450
r Batylbenzene		P9/19	Dewatering	Annual Mean	<180	100	-00
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020		890	2200
		µg/kg dry	Dewatering Cake	07/28/2020		910	2300
				11/03/2020		1600	3900
				Annual Mean	<1600	1000	3900
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
	EFA 0200B	видов руку	Dewatering	Annual Mean	17	1.0	0.1
			Cake	Annual Max	17		
		µg/kg dry		01/21/2020		1000	2600
				07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
			Calle			1200	3100
				Annual Mean	<1200 <1200		
Dropythanzona			Diant 1	Annual Max		00	100
n-Propylbenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
			Dewatering Cake	Annual Mean	<90		
				Annual Max	<90	440	000
		µg/kg dry	Plant 1	01/21/2020		440	890
			Dewatering Cake	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
EPA				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
			Dewatering	Annual Mean	14		
			Cake	Annual Max	14	=00	1055
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
o-Xylene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		1000
				Annual Max	<780	_	
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
	217102000	P9/119	Dewatering	Annual Mean	23	1.0	0.2
			Cake	Annual Max	23		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		µg/kg ury	Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620	020	1200
				Annual Max	<620		
ana Dutulhanzana			Diant 1			00	450
sec-Butylbenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	450
			Dewatering Cake	Annual Mean	<90		
				Annual Max	<90	4.40	0000
		µg/kg dry	Plant 1	01/21/2020		440	2200
			Dewatering Cake	07/28/2020		460	2300
				11/03/2020		780	3900
				Annual Mean	<780		
			-	Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2 Dewatering	04/22/2020		1.6	8.1
				Annual Mean	3.4 DNQ		
			Cake	Annual Max	3.4 DNQ		
		µg/kg dry	Plant 2	01/21/2020	ND	520	2600
		100,000	Dewatering	07/21/2020		280	1400
			Cake	11/03/2020		620	3100
				Annual Mean	<620		
				Annual Max	<620		
Styrene	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
	217102000	P9/119	Dewatering	Annual Mean	<90		100
			Cake	Annual Max	<90	_	
		µg/kg dry	Plant 1	01/21/2020		440	890
		pg/itg dry	Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780	700	1000
EPA 8260B				Annual Max	<780		
		ug/kg	Plant 2	04/22/2020		1.6	3.2
		µg/kg	Dewatering	Annual Mean	<1.6	1.0	J.Z
			Cake				
				Annual Max	<1.6	500	4000
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
tert-Butylbenzene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
		P. 3 3	Dewatering	Annual Mean	<180		
			Cake	Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020		890	2200
		13 3 5	Dewatering	07/28/2020		910	2300
			Cake	11/03/2020		1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	8.1
		15 5	Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		1000	2600
		µg,g	Dewatering	07/21/2020		550	1400
			Cake	11/03/2020		1200	3100
				Annual Mean	<1200		0100
				Annual Max	<1200		
Tetrachloroethene	EPA 8260B	µg/kg l	Plant 1	04/22/2020		90	180
enacinoroeniene		µg/kg	Dewatering	Annual Mean	<90	30	100
			Cake	Annual Max	<90 <90		
		µg/kg dry	Plant 1	01/21/2020		440	890
		µg/kg ury	Dewatering	07/28/2020		440	910
			Cake				-
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
		ua/ka	Dia at 0	Annual Max	<780	4.0	0.0
	EPA 8260B	µg/kg	Plant 2 Dewatering Cake	04/22/2020		1.6	3.2
				Annual Mean	<1.6		
				Annual Max	<1.6		1000
		µg/kg dry	Plant 2	01/21/2020		520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		
Toluene	EPA 8260B	µg/kg	Plant 1	04/22/2020		90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020		440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	21	1.6	3.2
			Dewatering	Annual Mean	21		
			Cake	Annual Max	21		
		µg/kg dry	Plant 2	01/21/2020	ND	520	1000
			Dewatering	07/21/2020	ND	280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		1

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
trans-1,2-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dichloroethene		100	Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020	ND	460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	3.2
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020	ND	620	1200
				Annual Mean	<620		
				Annual Max	<620		
trans-1,3-	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
Dichloropropene		100	Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
		pg, (g u) y	Dewatering	07/28/2020		460	910
			Cake	11/03/2020	ND	780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	3.2
		P9/119	Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	520	1000
			Dewatering	07/21/2020		280	550
			Cake	11/03/2020	ND	620	1200
				Annual Mean	<620		
				Annual Max	<620		
Trichloroethene	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	90	180
			Dewatering	Annual Mean	<90		
			Cake	Annual Max	<90		
		µg/kg dry	Plant 1	01/21/2020	ND	440	890
			Dewatering	07/28/2020		460	910
			Cake	11/03/2020		780	1600
				Annual Mean	<780		
				Annual Max	<780		
	EPA 8260B	µg/kg	Plant 2	04/22/2020		1.6	3.2
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020		520	1000
		10 0 1	Dewatering	07/21/2020		280	550
			Cake	11/03/2020		620	1200
				Annual Mean	<620		
				Annual Max	<620		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Trichlorofluoromet	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
hane			Dewatering Cake	Annual Mean	<180		
				Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	1000	2600
			Dewatering	07/21/2020	ND	550	1400
			Cake	11/03/2020	ND	1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		
Vinyl chloride	EPA 8260B	µg/kg	Plant 1	04/22/2020	ND	180	450
			Dewatering Cake	Annual Mean	<180		
				Annual Max	<180		
		µg/kg dry	Plant 1	01/21/2020	ND	890	2200
			Dewatering	07/28/2020	ND	910	2300
			Cake	11/03/2020	ND	1600	3900
				Annual Mean	<1600		
				Annual Max	<1600		
	EPA 8260B	µg/kg	Plant 2	04/22/2020	ND	1.6	8.1
			Dewatering	Annual Mean	<1.6		
			Cake	Annual Max	<1.6		
		µg/kg dry	Plant 2	01/21/2020	ND	1000	2600
			Dewatering	07/21/2020	ND	550	1400
			Cake	11/03/2020	ND	1200	3100
				Annual Mean	<1200		
				Annual Max	<1200		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
	namia Commonum do		Location				
	ganic Compounds			0.4./0.4./0.0.00			0.1.0.0
1,2,4- Trichlorobenzene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	8100
Irichiorobenzene			Dewatering Cake	04/21/2020		3900	9800
			Cake	07/21/2020		6400	16000
				10/20/2020		8200	20000
				Annual Mean	<8200		
	EDA 00700			Annual Max	<8200	0000	7400
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		3000	7400
			Dewatering Cake	04/21/2020		4100	10000
			Cake	07/21/2020		5700	14000
				10/20/2020		7300	18000
				Annual Mean	<7300		
1.0	EDA 00700			Annual Max	<7300	4700	0400
1,2- Dichlorobenzene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
Dichlorobenzene			Dewatering Cake	04/21/2020		2000	9800
			Cake	07/21/2020		3300	16000
				10/20/2020		4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
			Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	18000
				Annual Mean	<3800		
			-	Annual Max	<3800		
1,3-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	8100
Dichlorobenzene			Dewatering	04/21/2020		3900	9800
			Cake	07/21/2020		6400	16000
				10/20/2020		8200	20000
				Annual Mean	<8200		
			-	Annual Max	<8200		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		3000	7400
			Dewatering	04/21/2020		4100	10000
			Cake	07/21/2020		5700	14000
				10/20/2020		7300	18000
				Annual Mean	<7300		
			-	Annual Max	<7300		
1,4-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	8100
Dichlorobenzene			Dewatering	04/21/2020		3900	9800
			Cake	07/21/2020		6400	16000
				10/20/2020		8200	20000
				Annual Mean	<8200		
				Annual Max	<8200	0.000	-
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		3000	7400
			Dewatering	04/21/2020		4100	10000
			Cake	07/21/2020		5700	14000
				10/20/2020		7300	18000
				Annual Mean	<7300		
				Annual Max	<7300		
2,4,5-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		6500	16000
Trichlorophenol			Dewatering	04/21/2020		7900	20000
			Cake	07/21/2020		13000	32000
				10/20/2020		16000	41000
				Annual Mean	<16000		
				Annual Max	<16000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		5900	15000
			Dewatering	04/21/2020		8200	21000
			Cake	07/21/2020	ND	11000	28000

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
				10/20/2020	ND	15000	37000
				Annual Mean	<15000	10000	0.000
				Annual Max	<15000		
2,4,6-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		5200	16000
Trichlorophenol		pg/kg dry	Dewatering	04/21/2020		6300	20000
menerepriorier			Cake	07/21/2020		10000	32000
			Cuito	10/20/2020		13000	41000
				Annual Mean	<13000	13000	41000
				Annual Max	<13000		
	EPA 8270C	ug/kg day	Plant 2			4700	15000
	EPA 02/00	µg/kg dry	Dewatering	01/21/2020		4700	
			Cake	04/21/2020		6600	21000
			Cake	07/21/2020		9100	28000
				10/20/2020		12000	37000
				Annual Mean	<12000		
				Annual Max	<12000		
2,4-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1600	8100
Dichlorophenol			Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020		3200	16000
				10/20/2020	ND	4100	20000
				Annual Mean	<4100		
				Annual Max	<4100		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1500	7400
			Dewatering	04/21/2020	ND	2100	10000
			Cake	07/21/2020	ND	2800	14000
				10/20/2020	ND	3700	18000
				Annual Mean	<3700		
				Annual Max	<3700		
2,4-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	8100
Dimethylphenol		µg,g)	Dewatering	04/21/2020		3900	9800
			Cake	07/21/2020		6200	16000
				10/20/2020		8000	20000
				Annual Mean	<8000	0000	20000
				Annual Max	<8000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2900	7400
		µg/kg ury	Dewatering	04/21/2020		4000	10000
			Cake	07/21/2020		5600	14000
			Calle	10/20/2020			
						7200	18000
				Annual Mean	<7200		
			Disc. 4	Annual Max	<7200	0.4000	00000
2,4-Dinitrophenol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		24000	32000
			Dewatering Cake	04/21/2020		30000	39000
			Cake	07/21/2020		48000	64000
				10/20/2020		61000	82000
				Annual Mean	<61000		
				Annual Max	<61000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		22000	30000
			Dewatering	04/21/2020		31000	41000
			Cake	07/21/2020		43000	57000
				10/20/2020	ND	55000	73000
				Annual Mean	<55000		
				Annual Max	<55000		
2,4-Dinitrotoluene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1900	8100
			Dewatering	04/21/2020	ND	2400	9800
			Cake	07/21/2020		3800	16000
				10/20/2020		4900	20000
				Annual Mean	<4900		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1800	7400
			Dewatering	04/21/2020		2500	10000
			Cake	07/21/2020		3400	14000
				10/20/2020		4400	18000
				Annual Mean	<4400		
				Annual Max	<4400		
2,6-Dinitrotoluene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		2300	8100
2,0 21111000100110	217102100	µ9/19 al j	Dewatering	04/21/2020		2800	9800
			Cake	07/21/2020		4500	16000
				10/20/2020		5800	20000
				Annual Mean	<5800	0000	20000
				Annual Max	<5800		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2100	7400
	EFA 02700	µg/kg ury	Dewatering				
			Cake	04/21/2020		2900	10000
			Cake	07/21/2020		4000	14000
				10/20/2020		5200	18000
				Annual Mean	<5200		
-				Annual Max	<5200		
2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1600	8100
Chloronaphthalen			Dewatering	04/21/2020		2000	9800
е			Cake	07/21/2020		3200	16000
				10/20/2020		4100	20000
				Annual Mean	<4100		
				Annual Max	<4100		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1500	7400
			Dewatering	04/21/2020	ND	2100	10000
			Cake	07/21/2020	ND	2800	14000
				10/20/2020	ND	3700	18000
			Annual Mean	<3700			
				Annual Max	<3700		
2-Chlorophenol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1700	8100
			Dewatering	04/21/2020	ND	2000	9800
			Cake	07/21/2020	ND	3300	16000
				10/20/2020	ND	4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
		µ.9,9 ∝.)	Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	18000
				Annual Mean	<3800	0000	10000
				Annual Max	<3800		
2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
Methylnaphthalen		pg/kg ury	Dewatering	04/21/2020		2000	9800
e			Cake	07/21/2020		3300	16000
0			Ounc	10/20/2020			
						4300	20000
				Annual Mean	<4300		
			Diarst O	Annual Max	<4300	4500	7400
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
			Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
2-Methylphenol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1900	8100
			Dewatering	04/21/2020	ND	2400	9800
			Cake	07/21/2020	ND	3800	16000
				10/20/2020	ND	4900	20000
				Annual Mean	<4900		
				Annual Max	<4900		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1800	7400
			Dewatering	04/21/2020	ND	2500	10000
			Cake	07/21/2020	ND	3400	14000
				10/20/2020	ND	4400	18000
				Annual Mean	<4400		
				Annual Max	<4400		
2-Nitroaniline	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	5500	8100
			Dewatering	04/21/2020	ND	6700	9800
			Cake	07/21/2020	ND	11000	16000
				10/20/2020	ND	14000	20000
				Annual Mean	<14000		
				Annual Max	<14000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	5000	7400
			Dewatering	04/21/2020	ND	7000	10000
			Cake	07/21/2020	ND	9700	14000
				10/20/2020	ND	12000	18000
				Annual Mean	<12000		
				Annual Max	<12000		
2-Nitrophenol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	3200	8100
			Dewatering	04/21/2020	ND	3900	9800
			Cake	07/21/2020	ND	6400	16000
				10/20/2020	ND	8200	20000
				Annual Mean	<8200		
				Annual Max	<8200		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	3000	7400
			Dewatering	04/21/2020	ND	4100	10000
			Cake	07/21/2020	ND	5700	14000
				10/20/2020	ND	7300	18000
				Annual Mean	<7300		
				Annual Max	<7300		
3,3-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	3600	16000
Dichlorobenzidine			Dewatering	04/21/2020	ND	4300	20000
			Cake	07/21/2020	ND	7000	32000
				10/20/2020	ND	9000	41000
				Annual Mean	<9000		
				Annual Max	<9000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	3300	15000
			Dewatering	04/21/2020	ND	4500	21000
			Cake	07/21/2020	ND	6300	28000
				10/20/2020	ND	8000	37000
				Annual Mean	<8000		
				Annual Max	<8000		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
3-Nitroaniline	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	8100
5-INITO animine		µg/kg ury	Dewatering	04/21/2020		3900	9800
			Cake	07/21/2020		6400	16000
				10/20/2020		8200	20000
				Annual Mean	<8200	0200	20000
				Annual Max	<8200		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		3000	7400
		pg/itg dry	Dewatering	04/21/2020		4100	10000
			Cake	07/21/2020		5700	14000
				10/20/2020		7300	18000
				Annual Mean	<7300	7000	10000
				Annual Max	<7300		
4,6-Dinitro-2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	16000
methylphenol	EFA 02700	µg/kg ury	Dewatering	04/21/2020		3200	20000
meanyphenor			Cake	07/21/2020		6400	32000
			Cano	10/20/2020		8200	41000
				Annual Mean	<8200	0200	41000
			Diant 2	Annual Max	<8200	2000	15000
	EPA 8270C	µg/kg dry	Plant 2 Dewatering	01/21/2020		3000	15000
			Cake	04/21/2020		4100	21000
			Care	07/21/2020		5700	28000
				10/20/2020		7300	37000
				Annual Mean	<7300		
				Annual Max	<7300	4000	
4-Bromophenyl	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1800	8100
phenyl ether			Dewatering	04/21/2020		2200	9800
			Cake	07/21/2020		3600	16000
				10/20/2020		4600	20000
				Annual Mean	<4600		
				Annual Max	<4600		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1700	7400
			Dewatering	04/21/2020		2300	10000
			Cake	07/21/2020		3200	14000
				10/20/2020		4100	18000
				Annual Mean	<4100		
				Annual Max	<4100		
4-Chloro-3-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		4900	13000
methylphenol			Dewatering	04/21/2020		5900	16000
			Cake	07/21/2020	ND	9500	25000
				10/20/2020	ND	12000	33000
				Annual Mean	<12000		
				Annual Max	<12000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	4400	12000
			Dewatering	04/21/2020	ND	6200	16000
			Cake	07/21/2020	ND	8500	23000
				10/20/2020	ND	11000	29000
				Annual Mean	<11000		
				Annual Max	<11000		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
4-Chloroaniline	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		4900	16000
			Dewatering	04/21/2020	ND	5900	20000
			Cake	07/21/2020	ND	9500	32000
				10/20/2020	ND	12000	41000
				Annual Mean	<12000		
				Annual Max	<12000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	4400	15000
			Dewatering	04/21/2020	ND	6200	21000
			Cake	07/21/2020	ND	8500	28000
				10/20/2020	ND	11000	37000
				Annual Mean	<11000		
				Annual Max	<11000		
4-Chlorophenyl	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	6500	16000
phenyl ether			Dewatering	04/21/2020		7900	20000
			Cake	07/21/2020	ND	13000	32000
				10/20/2020		16000	41000
				Annual Mean	<16000		
				Annual Max	<16000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		5900	15000
		F-9-1-9-1-9	Dewatering	04/21/2020		8200	21000
			Cake	07/21/2020		11000	28000
				10/20/2020		15000	37000
				Annual Mean	<15000	10000	01000
				Annual Max	<15000		
4-Methylphenol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		8100	20000
		µg/kg ury	Dewatering	04/21/2020		3900	9800
			Cake	07/21/2020		6400	16000
				10/20/2020		8200	20000
				Annual Mean	87000 DNQ	0200	20000
				Annual Max	47000 DNQ		
				Annual Max	47000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	3000	7400
			Dewatering	04/21/2020	ND	4100	10000
			Cake	07/21/2020	ND	5700	14000
				10/20/2020	ND	7300	18000
				Annual Mean	<7300		
				Annual Max	<7300		
4-Nitroaniline	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	3200	16000
			Dewatering	04/21/2020	ND	3900	20000
			Cake	07/21/2020		6400	32000
				10/20/2020		8200	41000
				Annual Mean	<8200		
				Annual Max	<8200		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		3000	15000
			Dewatering	04/21/2020		4100	21000
			Cake	07/21/2020		5700	28000
				10/20/2020		7300	37000
				Annual Mean	<7300	1000	5.000
				Annual Mean	< 1.300		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
4-Nitrophenol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		16000	32000
			Dewatering	04/21/2020		20000	39000
			Cake	07/21/2020		32000	64000
				10/20/2020		41000	82000
				Annual Mean	<41000		
			-	Annual Max	<41000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		15000	30000
			Dewatering	04/21/2020		21000	41000
			Cake	07/21/2020		28000	57000
				10/20/2020		37000	73000
				Annual Mean	<37000		
				Annual Max	<37000		
Acenaphthene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		4200	8100
			Dewatering	04/21/2020		5100	9800
			Cake	07/21/2020		8300	16000
				10/20/2020	ND	11000	20000
				Annual Mean	<11000		
				Annual Max	<11000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	3800	7400
			Dewatering	04/21/2020	ND	5300	10000
			Cake	07/21/2020	ND	7400	14000
				10/20/2020	ND	9500	18000
				Annual Mean	<9500		
				Annual Max	<9500		
Acenaphthylene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1700	8100
			Dewatering	04/21/2020	ND	2000	9800
			Cake	07/21/2020	ND	3300	16000
				10/20/2020	ND	4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1500	7400
			Dewatering	04/21/2020	ND	2100	10000
			Cake	07/21/2020	ND	3000	14000
				10/20/2020	ND	3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
Aniline	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	4500	16000
			Dewatering	04/21/2020	ND	5500	20000
			Cake	07/21/2020	ND	8900	32000
				10/20/2020	ND	11000	41000
				Annual Mean	<11000		
				Annual Max	<11000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	4100	15000
			Dewatering	04/21/2020	ND	5700	21000
			Cake	07/21/2020	ND	8000	28000
				10/20/2020	ND	10000	37000
				Annual Mean	<10000		
				Annual Max	<10000		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Anthracene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1900	8100
	217102100	pg/ng ory	Dewatering	04/21/2020		2400	9800
			Cake	07/21/2020		3800	16000
				10/20/2020		4900	20000
				Annual Mean	<4900	+300	20000
				Annual Max	<4900		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1800	7400
	EFA 02700	µg/kg ury	Dewatering	04/21/2020		2500	10000
			Cake				
			Canc	07/21/2020		3400	14000
				10/20/2020		4400	18000
				Annual Mean	<4400	_	
				Annual Max	<4400		
Azobenzene/1,2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
Diphenylhydrazine			Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020	ND	3300	16000
				10/20/2020	ND	4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1500	7400
			Dewatering	04/21/2020	ND	2100	10000
			Cake	07/21/2020	ND	3000	14000
				10/20/2020	ND	3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
Benz(a)anthracen	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
e	217(02/00	pg/kg ary	Dewatering	04/21/2020		2000	9800
0			Cake	07/21/2020		3300	16000
				10/20/2020		4300	20000
				Annual Mean	<4300	4300	20000
				Annual Max	<4300		
	EPA 8270C	un /lin du /	Diant 0			4500	7400
	EPA 02/00	µg/kg dry	Plant 2	01/21/2020		1500	
			Dewatering Cake	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	18000
				Annual Mean	<3800		
			-	Annual Max	<3800		
Benzidine	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		5500	42000
			Dewatering	04/21/2020		6700	51000
			Cake	10/20/2020	ND	14000	110000
				Annual Mean	<14000		
				Annual Max	<14000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	5000	38000
			Dewatering	04/21/2020	ND	7000	53000
			Cake	10/20/2020	ND	12000	95000
				Annual Mean	<12000		
				Annual Max	<12000		1
Benzo(a)pyrene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1600	8100
			Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020		3200	16000
				10/20/2020		4100	20000
				Annual Mean	<4100		20000
				Annual Max	<4100	_	-
	EPA 8270C	ua/ka day	Plant 2	01/21/2020		1500	7400
	EPA 02/UU	µg/kg dry					
			Dewatering Cake	04/21/2020		2100	10000
			Jane	07/21/2020		2800	14000
				10/20/2020		3700	18000
				Annual Mean	<3700		
				Annual Max	<3700		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
D (1)(1)		<i>"</i>	Location	/ /			
Benzo(b)fluoranth	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
ene			Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020		3300	16000
				10/20/2020		4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1500	7400
			Dewatering	04/21/2020	ND	2100	10000
			Cake	07/21/2020	ND	3000	14000
				10/20/2020	ND	3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
Benzo(g,h,i)peryle	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	2700	8100
ne			Dewatering	04/21/2020	ND	3200	9800
			Cake	07/21/2020	ND	5200	16000
				10/20/2020	ND	6700	20000
				Annual Mean	<6700		
				Annual Max	<6700		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2400	7400
	217102100	µg/ng ary	Dewatering	04/21/2020		3400	10000
			Cake	07/21/2020		4700	14000
				10/20/2020		6000	18000
				Annual Mean	<6000	0000	10000
				Annual Max	<6000		
Benzo(k)fluoranth		ua/ka day	Plant 1	01/21/2020		1700	8100
ene	EFA 02700	µg/kg dry	Dewatering			-	9800
ene			Cake	04/21/2020		2000	16000
				07/21/2020		3300	
				10/20/2020		4300	20000
				Annual Mean	<4300		
			Disust 0	Annual Max	<4300	4500	7400
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
			Dewatering Cake	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
Benzoic acid	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		12000	24000
			Dewatering		25000 DNQ	14000	30000
			Cake	07/21/2020		23000	48000
				10/20/2020		29000	61000
				Annual Mean	22000 DNQ		
				Annual Max	25000 DNQ		
			Diami C	04/04/00000		11000	00000
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		11000	22000
			Dewatering	04/21/2020		15000	31000
			Cake	07/21/2020		20000	43000
				10/20/2020		26000	55000
				Annual Mean	<26000		
				Annual Max	<26000		
Benzyl alcohol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		13000	42000
			Dewatering	04/21/2020		16000	51000
			Cake	07/21/2020	ND	26000	83000
				10/20/2020	ND	34000	110000
				Annual Mean	<34000		
				Annual Max	<34000		
Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
--------------------	------------------	----------------------------	--------------------	--------------	----------	-------	---------
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	12000	38000
		P. 9 9 7	Dewatering	04/21/2020		17000	53000
			Cake	07/21/2020		23000	74000
				10/20/2020		30000	95000
				Annual Mean	<30000		
				Annual Max	<30000		
Bis(2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	8100
chloroethoxy)met		pg/kg dry	Dewatering	04/21/2020		3900	9800
hane			Cake	07/21/2020		6400	16000
				10/20/2020		8200	20000
				Annual Mean	<8200	0200	20000
				Annual Max	<8200		
	EPA 8270C	ua/ka day	Plant 2	01/21/2020		3000	7400
	EFA 02700	µg/kg dry	Dewatering				
			Cake	04/21/2020		4100	10000
			Calle	07/21/2020		5700	
				10/20/2020		7300	18000
				Annual Mean	<7300		
D : (0	FDA 00700			Annual Max	<7300	4700	0.4.0.0
Bis(2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
chloroethyl)ether			Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020		3300	16000
				10/20/2020		4300	20000
				Annual Mean	3800 DNQ		
				Annual Max	4200 DNQ		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
			Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020	ND	3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
Bis(2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	3200	8100
chloroisopropyl)et			Dewatering	04/21/2020	ND	3900	9800
her			Cake	07/21/2020	ND	6400	16000
				10/20/2020	ND	8200	20000
				Annual Mean	<8200		
				Annual Max	<8200		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	3000	7400
			Dewatering	04/21/2020	ND	4100	10000
			Cake	07/21/2020	ND	5700	14000
				10/20/2020	ND	7300	18000
				Annual Mean	<7300		
				Annual Max	<7300		
Bis(2-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		2200	8100
ethylhexyl)phthala			Dewatering	04/21/2020		2700	9800
te			Cake	07/21/2020		4300	16000
				10/20/2020	37000	5600	20000
				Annual Mean	35000		
				Annual Max	45000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2000	7400
		~ 3 [,] 1 3 0 1 3	Dewatering	04/21/2020		2800	10000
			Cake	07/21/2020		3900	14000
			-	10/20/2020		5000	14000
				Annual Mean	42000	0000	10000
				Annual Max	61000		
				AIIIIUAI MAX	01000		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Butyl benzyl	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1900	8100
phthalate			Dewatering	04/21/2020	ND	2400	9800
			Cake	07/21/2020	ND	3800	16000
				10/20/2020	ND	4900	20000
				Annual Mean	<4900		
				Annual Max	<4900		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1800	7400
			Dewatering	04/21/2020	ND	2500	10000
			Cake	07/21/2020	ND	3400	14000
				10/20/2020	ND	4400	18000
				Annual Mean	<4400		
				Annual Max	<4400		
Chrysene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1800	8100
			Dewatering	04/21/2020	ND	2200	9800
			Cake	07/21/2020		3600	16000
				10/20/2020		4600	20000
				Annual Mean	<4600		
				Annual Max	<4600		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1700	7400
		µg,g,	Dewatering	04/21/2020		2300	10000
			Cake	07/21/2020		3200	14000
				10/20/2020		4100	18000
				Annual Mean	<4100	1100	10000
				Annual Max	<4100		
Dibenz(a,h)anthra	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		2400	8100
cene		µg/kg diy	Dewatering	04/21/2020		3000	9800
			Cake	07/21/2020		4800	16000
				10/20/2020		6100	20000
				Annual Mean	<6100	0100	20000
				Annual Max	<6100		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2200	7400
	EFA 02700	µg/kg ury	Dewatering	04/21/2020		3100	10000
			Cake	07/21/2020		4300	14000
			Care	10/20/2020			
						5500	18000
				Annual Mean	<5500		
Dihanaafunan		un du du d	Diant 4	Annual Max	<5500	4500	0400
Dibenzofuran	EPA 8270C	µg/kg dry	Plant 1 Dewatering	01/21/2020		4500	8100
			Cake	04/21/2020		5500	9800
			Care	07/21/2020		8900	16000
				10/20/2020		11000	20000
				Annual Mean	<11000		
			Dian (C	Annual Max	<11000	4400	7400
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		4100	7400
			Dewatering	04/21/2020		5700	10000
			Cake	07/21/2020		8000	14000
				10/20/2020		10000	18000
				Annual Mean	<10000		
				Annual Max	<10000		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Diethyl phthalate	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	2300	8100
		µg/kg ury	Dewatering	04/21/2020		2800	9800
			Cake	07/21/2020		4500	16000
				10/20/2020		5800	20000
				Annual Mean	<5800	5000	20000
				Annual Max	<5800		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2100	7400
		pg/ng ory	Dewatering	04/21/2020		2900	10000
			Cake	07/21/2020		4000	14000
				10/20/2020		5200	18000
				Annual Mean	<5200	0200	10000
				Annual Max	<5200		
Dimethyl	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1600	8100
phthalate		pg/kg ary	Dewatering	04/21/2020		2000	9800
F			Cake	07/21/2020		3200	16000
				10/20/2020		4100	20000
				Annual Mean	<4100	1100	20000
				Annual Max	<4100		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
		pg/ng ory	Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		2800	14000
				10/20/2020		3700	18000
				Annual Mean	<3700	0100	10000
				Annual Max	<3700		
Di-n-butyl	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		2200	8100
phthalate		pg/ng ory	Dewatering	04/21/2020		2700	9800
F			Cake	07/21/2020		4300	16000
				10/20/2020		5600	20000
				Annual Mean	<5600	0000	20000
				Annual Max	<5600		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2000	7400
		pg/ng ory	Dewatering	04/21/2020		2800	10000
			Cake	07/21/2020		3900	14000
				10/20/2020		5000	18000
				Annual Mean	<5000	0000	10000
				Annual Max	<5000		
Di-n-octyl	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		2200	8100
phthalate		pg/ng ory	Dewatering	04/21/2020		2700	9800
F			Cake	07/21/2020		4300	16000
				10/20/2020		5600	20000
				Annual Mean	<5600	0000	20000
				Annual Max	<5600		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2000	7400
	2. / 02/00	Pg/ing di y	Dewatering	04/21/2020		2800	10000
			Cake	07/21/2020		3900	14000
				10/20/2020		5000	18000
				Annual Mean	<5000	0000	10000
				Annual Max	<5000	_	

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Fluoranthene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	5200	11000
			Dewatering	04/21/2020	ND	6300	13000
			Cake	07/21/2020	ND	10000	21000
				10/20/2020	ND	13000	27000
				Annual Mean	<13000		
				Annual Max	<13000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	4700	9800
			Dewatering	04/21/2020	ND	6600	14000
			Cake	07/21/2020	ND	9100	19000
				10/20/2020	ND	12000	24000
				Annual Mean	<12000		
				Annual Max	<12000		
Fluorene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1700	8100
			Dewatering	04/21/2020	ND	2000	9800
			Cake	07/21/2020	ND	3300	16000
				10/20/2020	ND	4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1500	7400
			Dewatering	04/21/2020	ND	2100	10000
			Cake	07/21/2020	ND	3000	14000
				10/20/2020	ND	3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
Hexachlorobenze	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	1700	8100
ne			Dewatering	04/21/2020	ND	2000	9800
			Cake	07/21/2020	ND	3300	16000
				10/20/2020	ND	4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	1500	7400
			Dewatering	04/21/2020	ND	2100	10000
			Cake	07/21/2020	ND	3000	14000
				10/20/2020	ND	3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
Hexachlorobutadi	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	3200	8100
ene			Dewatering	04/21/2020	ND	3900	9800
			Cake	07/21/2020	ND	6400	16000
				10/20/2020	ND	8200	20000
				Annual Mean	<8200		
				Annual Max	<8200		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	3000	7400
			Dewatering	04/21/2020	ND	4100	10000
			Cake	07/21/2020	ND	5700	14000
				10/20/2020	ND	7300	18000
				Annual Mean	<7300		
				Annual Max	<7300		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
l la ca ab la na accala n	EDA 00700		Location	04/04/0000	ND	40000	0.4000
Hexachlorocyclop entadiene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		10000	24000
entadiene			Dewatering Cake	04/21/2020		12000	30000
			Care	07/21/2020		20000	48000
						25000	61000
				Annual Mean Annual Max	<25000 <25000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		9200	22000
	EFA 02700	µg/kg ury	Dewatering	04/21/2020		13000	31000
			Cake	07/21/2020		18000	43000
			Cuito	10/20/2020		23000	55000
				Annual Mean	<23000	23000	55000
				Annual Max	<23000		
Hexachloroethane		µg/kg dry	Plant 1	01/21/2020		2300	8100
riexactiloroetilarie	LFA 02700	µg/kg ury	Dewatering	04/21/2020		2800	9800
			Cake	07/21/2020		4400	16000
			Cuito	10/20/2020		5700	20000
				Annual Mean	<5700	5700	20000
				Annual Max	<5700		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2100	7400
	LFA 02700	µg/kg ury	Dewatering	04/21/2020		2900	10000
			Cake	07/21/2020		4000	14000
			Callo	10/20/2020		5100	14000
				Annual Mean	<5100	5100	10000
				Annual Max	<5100		
Indeno(1,2,3-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3200	8100
cd)pyrene		µg/kg ury	Dewatering	04/21/2020		3900	9800
			Cake	07/21/2020		6200	16000
				10/20/2020		8000	20000
				Annual Mean	<8000	0000	20000
				Annual Max	<8000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		2900	7400
		µg/kg ury	Dewatering	04/21/2020		4000	10000
			Cake	07/21/2020		5600	14000
				10/20/2020		7200	18000
				Annual Mean	<7200	7200	10000
				Annual Max	<7200		
Isophorone	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1600	8100
		µg/ng ary	Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020		3200	16000
				10/20/2020		4100	20000
				Annual Mean	<4100		20000
				Annual Max	<4100		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
		ry,y	Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		2800	14000
				10/20/2020		3700	18000
				Annual Mean	<3700	5.00	
				Annual Max	<3700		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Kepone	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		24000	130000
			Dewatering	04/21/2020		30000	160000
			Cake	07/21/2020		48000	250000
				10/20/2020		61000	330000
				Annual Mean	<61000		
			-	Annual Max	<61000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		22000	120000
			Dewatering	04/21/2020		31000	160000
			Cake	07/21/2020		43000	230000
				10/20/2020		55000	290000
				Annual Mean	<55000		
				Annual Max	<55000		
Naphthalene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1600	8100
			Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020		3200	16000
				10/20/2020		4100	20000
				Annual Mean	<4100		
				Annual Max	<4100		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
			Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		2800	14000
				10/20/2020		3700	18000
				Annual Mean	<3700		
				Annual Max	<3700		
Nitrobenzene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
			Dewatering	04/21/2020		2000	9800
			Cake	07/21/2020		3300	16000
				10/20/2020		4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
			Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		
N-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
Nitrosodimethyla			Dewatering	04/21/2020		2000	9800
mine			Cake	07/21/2020		3300	16000
				10/20/2020	ND	4300	20000
				Annual Mean	<4300		
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
			Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	18000
				Annual Mean	<3800		
				Annual Max	<3800		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
N-Nitroso-di-n-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		1700	8100
propylamine		pg/kg ury	Dewatering	04/21/2020		2000	9800
propylamino			Cake	07/21/2020		3300	16000
				10/20/2020		4300	20000
				Annual Mean	<4300	+300	20000
				Annual Max	<4300		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		1500	7400
		µg/kg ury	Dewatering	04/21/2020		2100	10000
			Cake	07/21/2020		3000	14000
				10/20/2020		3800	14000
				Annual Mean	<3800	3000	10000
N			Diamit 4	Annual Max	<3800	5000	10000
N-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		5200	16000
Nitrosodiphenyla mine			Dewatering Cake	04/21/2020		6300	20000
IIIIIe			Cake	07/21/2020		10000	32000
				10/20/2020		13000	41000
				Annual Mean	<13000		
				Annual Max	<13000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		4700	15000
			Dewatering	04/21/2020		6600	21000
			Cake	07/21/2020		9100	28000
				10/20/2020		12000	37000
				Annual Mean	<12000		
				Annual Max	<12000		
Pentachloropheno	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	8400	16000
1			Dewatering	04/21/2020	ND	10000	20000
			Cake	07/21/2020	ND	17000	32000
				10/20/2020	ND	21000	41000
				Annual Mean	<21000		
				Annual Max	<21000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	7700	15000
			Dewatering	04/21/2020	ND	11000	21000
			Cake	07/21/2020	ND	15000	28000
				10/20/2020	ND	19000	37000
				Annual Mean	<19000		
				Annual Max	<19000		
Phenanthrene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		4900	11000
			Dewatering	04/21/2020		5900	13000
			Cake	07/21/2020		9500	21000
				10/20/2020		12000	27000
				Annual Mean	<12000		
				Annual Max	<12000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		4400	9800
		r 9, 1, 9, 0, 1	Dewatering	04/21/2020		6200	14000
			Cake	07/21/2020		8500	19000
				10/20/2020		11000	24000
				Annual Mean	<11000	11000	27000
				Annual Max	<11000		
					<11000		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Phenol	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	11000	2200	8100
			Dewatering	04/21/2020	16000	2700	9800
			Cake	07/21/2020	20000	4300	16000
				10/20/2020	190000	5600	20000
				Annual Mean	59000		
				Annual Max	190000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	ND	2000	7400
			Dewatering	04/21/2020	6200 DNQ	2800	10000
			Cake	07/21/2020	ND	3900	14000
				10/20/2020	68000	5000	18000
				Annual Mean	20000 DNQ		
				Annual Max	68000		
Pyrene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	ND	3200	8100
			Dewatering	04/21/2020	ND	3900	9800
			Cake	07/21/2020		6400	16000
				10/20/2020		8200	20000
				Annual Mean	<8200		
				Annual Max	<8200		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		3000	7400
			Dewatering	04/21/2020		4100	10000
			Cake	07/21/2020		5700	14000
				10/20/2020	ND	7300	18000
				Annual Mean	<7300		
				Annual Max	<7300		
Pyridine	EPA 8270C	µg/kg dry	Plant 1	01/21/2020		3600	11000
,			Dewatering	04/21/2020		4300	13000
			Cake	07/21/2020		7000	22000
				10/20/2020		9000	28000
				Annual Mean	<9000		
				Annual Max	<9000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020		3300	10000
			Dewatering	04/21/2020		4500	14000
			Cake	07/21/2020		6300	19000
				10/20/2020	ND	8000	25000
				Annual Mean	<8000		
				Annual Max	<8000		
Total Cresols	EPA 8270C	µg/kg dry	Plant 1	10/20/2020			
		1.3.3.1	Dewatering	Annual Mean	47000		-
			Cake	Annual Max	47000		
	EPA 8270C	µg/kg dry	Plant 2	10/20/2020			
		r 9, . 9 a. y	Dewatering	Annual Mean	(
			Cake	Annual Max	(

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Organochlorine I	Pesticides						
Aldrin	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	200	1300
			Dewatering	01/28/2020	ND	130	430
			Cake	04/21/2020	ND	7.3	24
				07/21/2020	ND	120	400
				Annual Mean	<200		
				Annual Max	<200		
		mg/kg dry	Plant 1	11/17/2020	ND	0.71	2.0
		weight	Dewatering	Annual Mean	<0.71		
		-	Cake	Annual Max	<0.71		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	170	1200
			Dewatering	01/28/2020	ND	120	400
			Cake	04/21/2020		7.6	25
				07/21/2020		53	180
				Annual Mean	<170		
				Annual Max	<170		
		mg/kg dry	Plant 2	11/17/2020	ND	0.62	1.7
		weight	Dewatering	Annual Mean	<0.62		
			Cake	Annual Max	<0.62		
alpha-BHC	EPA 8081A	µg/kg dry	Plant 1 Dewatering Cake	01/21/2020	ND	170	1300
-				01/28/2020	ND	130	430
				04/21/2020	ND	7.3	24
				07/21/2020	ND	120	400
				Annual Mean	<170		
				Annual Max	<170		
		mg/kg dry	Plant 1	11/17/2020	ND	0.75	2.0
		weight	Dewatering	Annual Mean	<0.75		
			Cake	Annual Max	<0.75		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	150	1200
			Dewatering	01/28/2020	ND	120	400
			Cake	04/21/2020	ND	7.6	25
				07/21/2020	ND	53	180
				Annual Mean	<150		
				Annual Max	<150		
		mg/kg dry	Plant 2	11/17/2020	ND	0.65	1.7
		weight	Dewatering	Annual Mean	<0.65		
			Cake	Annual Max	<0.65		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
beta-BHC	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		520	1300
			Dewatering	01/28/2020		130	430
			Cake	04/21/2020		7.3	24
				07/21/2020	ND	120	400
				Annual Mean	<520		
				Annual Max	<520		
		mg/kg dry	Plant 1	11/17/2020	ND	1.0	2.0
		weight	Dewatering	Annual Mean	<1.0		
			Cake	Annual Max	<1.0		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	450	1200
			Dewatering	01/28/2020	ND	120	400
			Cake	04/21/2020	ND	7.6	25
				07/21/2020	ND	53	180
				Annual Mean	<450		
				Annual Max	<450		
		mg/kg dry	Plant 2	11/17/2020		0.89	1.7
		weight		Annual Mean	<0.89	0.00	1.7
		Wolgin	Cake	Annual Max	<0.89		
Chlordane	EPA 8081A	ua/ka day	Plant 1	01/21/2020		6100	19000
Chiordane	EPA 0001A	µg/kg dry	Dewatering				
			Cake	01/28/2020		1300	4300
			Care	04/21/2020		73	240
				07/21/2020		1200	4000
				Annual Mean	<6100		
				Annual Max	<6100		
		mg/kg dry		11/17/2020		7.5	20
		weight	Dewatering	Annual Mean	<7.5		
			Cake	Annual Max	<7.5		
	EPA 8081A	µg/kg dry		01/21/2020	ND	5300	17000
			Dewatering	01/28/2020	ND	1200	4000
			Cake	04/21/2020	ND	76	250
				07/21/2020	ND	530	1800
				Annual Mean	<5300		
				Annual Max	<5300		
		mg/kg dry	Plant 2	11/17/2020	ND	6.5	17
		weight	Dewatering	Annual Mean	<6.5		
			Cake	Annual Max	<6.5		
delta-BHC	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	310	1300
		13-3-5	Dewatering	01/28/2020		130	860
			Cake	04/21/2020		7.3	49
				07/21/2020		120	800
				Annual Mean	<310		000
				Annual Max	<310		
		mg/kg dry	Plant 1	11/17/2020		0.91	2.0
		weight	Dewatering	Annual Mean	<0.91	0.91	2.0
		weight	Cake	Annual Max	<0.91		
		ualka dari	Plant 2			270	1200
	EPA 8081A	µg/kg dry		01/21/2020		270	1200
			Dewatering Cake	01/28/2020		120	800
			Cake	04/21/2020		7.6	51
				07/21/2020		53	360
				Annual Mean	<270		
				Annual Max	<270		
		mg/kg dry	Plant 2	11/17/2020		0.79	1.7
		weight	Dewatering	Annual Mean	<0.79		
			Cake	Annual Max	<0.79		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL		
Dialduia		u a /l ca alm (Location	04/04/0000		100	1200		
Dieldrin	EPA 8081A	µg/kg dry	Plant 1 Dewatering	01/21/2020		160	1300		
			Cake	01/28/2020		130	430		
			Cake	04/21/2020		7.3	24		
				07/21/2020		120	400		
				Annual Mean	<160				
				Annual Max	<160				
		mg/kg dry	Plant 1	11/17/2020	ND	0.75	2.0		
		weight	Dewatering	Annual Mean	<0.75				
			Cake	Annual Max	<0.75				
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	140	1200		
			Dewatering	01/28/2020	ND	120	400		
			Cake	04/21/2020	ND	7.6	25		
				07/21/2020		53	180		
				Annual Mean	<140				
				Annual Max	<140				
		mg/kg dry		11/17/2020		0.65	1.7		
		weight				0.05	1.7		
		weigin	Dewatering Cake	Annual Mean	< 0.65				
-				Annual Max	< 0.65	4.40	4000		
Endosulfan 1	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		140	1300		
			Dewatering	01/28/2020		130	430		
			Cake	04/21/2020		7.3	24		
				07/21/2020	ND	120	400		
			A	Annual Mean	<140				
				Annual Max	<140				
		mg/kg dry	Plant 1	11/17/2020	ND	0.67	2.0		
		weight	Dewatering	Annual Mean	<0.67				
			Cake	Annual Max	<0.67				
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		120	1200		
		pg/kg dry	Dewatering	01/28/2020		120	400		
			Cake	04/21/2020		7.6	25		
					Carlo				-
				07/21/2020		53	180		
				Annual Mean	<120				
				Annual Max	<120				
		mg/kg dry	Plant 2	11/17/2020	ND	0.58	1.7		
		weight	Dewatering	Annual Mean	<0.58				
			Cake	Annual Max	<0.58				
Endosulfan 2	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	220	1300		
			Dewatering	01/28/2020	ND	130	430		
			Cake	04/21/2020	ND	7.3	24		
				07/21/2020		120	400		
				Annual Mean	<220				
				Annual Max	<220				
		mg/kg dry	Plant 1	11/17/2020		0.75	2.0		
		weight	Dewatering	Annual Mean	<0.75	0.10	2.0		
		weigin	Cake				_		
				Annual Max	<0.75	000	4000		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		200	1200		
			Dewatering	01/28/2020		120	400		
			Cake	04/21/2020		7.6	25		
				07/21/2020	ND	53	180		
				Annual Mean	<200				
				Annual Max	<200				
		mg/kg dry	Plant 2	11/17/2020	ND	0.65	1.7		
		mg/kg dry weight					-		
			Dewatering	Annual Mean	<0.65				

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL			
			Location							
Endosulfan	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	210	1300			
Sulfate			Dewatering	01/28/2020	ND	170	860			
			Cake	04/21/2020	ND	9.7	49			
				07/21/2020	ND	160	800			
				Annual Mean	<210					
				Annual Max	<210					
		mg/kg dry	Plant 1	11/17/2020	ND	0.83	2.0			
		weight	Dewatering	Annual Mean	<0.83					
			Cake	Annual Max	<0.83					
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	190	1200			
			Dewatering	01/28/2020	ND	160	800			
			Cake	04/21/2020	ND	10	51			
				07/21/2020		71	360			
				Annual Mean	<190					
				Annual Max	<190					
		mg/kg dry	Plant 2	11/17/2020		0.72	1.7			
		weight	Dewatering	Annual Mean	<0.72	0.12	1.7			
			Cake	Annual Max	<0.72					
Endrin	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		240	1300			
		hð við	Dewatering	01/28/2020		130	430			
			Cake	04/21/2020		7.3	430 24			
			Carlo				-			
				07/21/2020		120	400			
				Annual Mean	<240					
		ma/ka day		Annual Max	<240					
		mg/kg dry weight	11/17/2020		0.71	2.0				
			Dewatering	Annual Mean	<0.71					
			Cake	Annual Max	<0.71					
	EPA 8081A	PA 8081A µg/kg dry	Plant 2	01/21/2020		210	1200			
			Dewatering	01/28/2020		120	400			
						Cake	04/21/2020	ND	7.6	25
					07/21/2020	ND	53	180		
				Annual Mean	<210					
				Annual Max	<210					
		mg/kg dry	Plant 2	11/17/2020	ND	0.62	1.7			
		weight	Dewatering	Annual Mean	<0.62					
			Cake	Annual Max	<0.62					
Endrin Aldehyde	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	130	1300			
-			Dewatering	01/28/2020		130	430			
			Cake	04/21/2020		7.3	24			
				07/21/2020		120	400			
				Annual Mean	<130					
				Annual Max	<130					
		mg/kg dry	Plant 1	11/17/2020		0.75	2.0			
		weight	Dewatering	Annual Mean	<0.75		-			
			Cake	Annual Max	<0.75					
	FPA 8081A	ua/ka dry	Plant 2	01/21/2020		120	1200			
	EPA 8081A µg/kg dry	PS/NS CIT	Dewatering	01/28/2020		120	400			
			Cake	04/21/2020		7.6	25			
				07/21/2020		53	180			
						55	100			
				Annual Mean	<120					
			Disut 0	Annual Max	<120	0.05	4 7			
		mg/kg dry	Plant 2	11/17/2020		0.65	1.7			
		weight	Dewatering	Annual Mean	< 0.65					
			Cake	Annual Max	<0.65					

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
Endrin Ketone	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	160	1300
			Dewatering	01/28/2020		170	430
			Cake	04/21/2020		9.7	24
				07/21/2020	ND	160	400
				Annual Mean	<170		
				Annual Max	<170		
	EPA 8081A µ	µg/kg dry	Plant 2	01/21/2020	ND	140	1200
			Dewatering	01/28/2020	ND	160	400
			Cake	04/21/2020	ND	10	25
				07/21/2020	ND	71	180
				Annual Mean	<160		
				Annual Max	<160		
gamma-BHC	EPA 8081A	µg/kg dry	Dewatering	01/21/2020	ND	150	1300
				01/28/2020	ND	130	430
			Cake	04/21/2020	ND	7.3	24
				07/21/2020	ND	120	400
				Annual Mean	<150		
				Annual Max	<150		
		mg/kg dry	Plant 1	11/17/2020	ND	0.79	2.0
		weight	Dewatering	Annual Mean	<0.79		
			Cake	Annual Max	<0.79		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	130	1200
			Dewatering	01/28/2020	ND	120	400
			Cake	04/21/2020		7.6	25
				07/21/2020		53	180
				Annual Mean	<130		
				Annual Max	<130		
		mg/kg dry		11/17/2020		0.68	1.7
		weight		Annual Mean	<0.68		
				Annual Max	<0.68		
Heptachlor	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		170	1300
•			Dewatering	01/28/2020		170	430
			Cake	04/21/2020		9.7	24
				07/21/2020	ND	160	400
				Annual Mean	<170		
				Annual Max	<170	_	
		mg/kg dry	Plant 1	11/17/2020		0.95	2.0
		weight	Dewatering	Annual Mean	<0.95		
			Cake	Annual Max	<0.95		1
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		150	1200
			Dewatering	01/28/2020		160	400
			Cake	04/21/2020		10	25
				07/21/2020		71	180
				Annual Mean	<160	_	
				Annual Max	<160	_	-
		mg/kg dry	Plant 2	11/17/2020		0.82	1.7
		weight	Dewatering	Annual Mean	<0.82		
			Cake	Annual Max		1	

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Heptachlor	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	330	1300
Epoxide		µg/kg dry	Dewatering	01/28/2020		170	430
Lpondo			Cake	04/21/2020		9.7	24
				07/21/2020		160	400
				Annual Mean	<330	100	400
				Annual Max	<330		
		ma/ka day	Plant 1	11/17/2020		0.67	2.0
		mg/kg dry weight	Dewatering	Annual Mean	<0.67	0.07	2.0
		weight	Cake				
				Annual Max	<0.67	000	4000
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		290	1200
			Dewatering Cake	01/28/2020		160	400
			Cake	04/21/2020		10	25
				07/21/2020		71	180
				Annual Mean	<290		
				Annual Max	<290		
		mg/kg dry	Plant 2	11/17/2020		0.58	1.7
		weight	Dewatering	Annual Mean	<0.58		
			Cake	Annual Max	<0.58		
Kepone	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	19000	58000
			Dewatering	04/21/2020	ND	100000	290000
			Cake	Annual Mean	<100000		
				Annual Max	<100000		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	17000	51000
			Dewatering	04/21/2020	ND	110000	300000
			Cake	Annual Mean	<110000		
				Annual Max	<110000		
Methoxychlor EPA 8081A	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	350	2600
			Dewatering	01/28/2020		130	430
			Cake	04/21/2020		7.3	24
				07/21/2020		120	400
				Annual Mean	<350	120	400
				Annual Max	<350		
		mg/kg dry	Plant 1	11/17/2020		1.5	4.0
		weight		Annual Mean		1.5	4.0
		weight	Dewatering Cake		<1.5		
				Annual Max	<1.5	040	0000
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		310	2300
			Dewatering	01/28/2020		120	400
			Cake	04/21/2020		7.6	25
				07/21/2020		53	180
				Annual Mean	<310		
				Annual Max	<310		
		mg/kg dry	Plant 2	11/17/2020		1.3	3.4
		weight	Dewatering	Annual Mean	<1.3		
			Cake	Annual Max	<1.3		
Mirex	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		210	1300
			Dewatering	04/21/2020	ND	1300	3300
			Cake	10/20/2020	ND	2700	6900
				Annual Mean	<2700		
				Annual Max	<2700		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	180	1200
			Dewatering	04/21/2020		1300	3400
			Cake	10/20/2020		2400	6100
			Jane	Annual Mean	<2400		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location	04/04/0000		0.00	4000
o,p'-DDD	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		280	1300
			Dewatering	01/28/2020		130	430
			Cake	04/21/2020		7.3	24
				07/21/2020		120	400
				Annual Mean	<280		
				Annual Max	<280		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	250	1200
			Dewatering	01/28/2020	ND	120	400
			Cake	04/21/2020	ND	7.6	25
				07/21/2020	ND	53	180
				Annual Mean	<250	_	
				Annual Max	<250		
o,p'-DDE	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		510	1300
0,p DDL		pg/kg dry	Dewatering	01/28/2020		130	430
			Cake	04/21/2020			24
			Ource			7.3	
				07/21/2020		120	400
				Annual Mean	<510		
				Annual Max	<510		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		440	1200
			Dewatering	01/28/2020	ND	120	400
			Cake	04/21/2020	ND	7.6	25
				07/21/2020	ND	53	180
				Annual Mean	<440		
				Annual Max	<440		
o,p'-DDT	EPA 8081A	µg/kg dry	Plant 1	01/21/2020	ND	410	1300
1		100,000	Dewatering	01/28/2020		130	430
			Cake	04/21/2020		7.3	24
				07/21/2020		120	400
				Annual Mean	<410	120	100
				Annual Max	<410		
	EPA 8081A	ua/ka day	Plant 2	01/21/2020	-	360	1200
	EFA OUOTA	µg/kg dry	Dewatering				
			Cake	01/28/2020		120	400
			Care	04/21/2020		7.6	25
				07/21/2020		53	180
				Annual Mean	<360		
				Annual Max	<360		
p,p'-DDD	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		420	1300
			Dewatering	01/28/2020	ND	130	430
			Cake	04/21/2020	ND	7.3	24
				07/21/2020	ND	120	400
				Annual Mean	<420		
				Annual Max	<420		
		mg/kg dry	Plant 1	11/17/2020	ND	0.95	2.0
		weight	Dewatering	Annual Mean	<0.95		
			Cake	Annual Max	<0.95		1
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		370	1200
		- gg. or y	Dewatering	01/28/2020		120	400
			Cake	04/21/2020		7.6	25
				07/21/2020		53	180
						55	100
				Annual Mean	<370		
			Diaut C	Annual Max	<370	0.00	4 7
		mg/kg dry	Plant 2	11/17/2020		0.82	1.7
		weight	Dewatering	Annual Mean	<0.82		
			Cake	Annual Max	<0.82		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
			Location				
p,p'-DDE	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		190	1300
			Dewatering	01/28/2020		130	430
			Cake	04/21/2020		7.3	24
				07/21/2020		120	400
				Annual Mean	<190		
				Annual Max	<190		
		mg/kg dry	Plant 1	11/17/2020		0.87	2.0
		weight	Dewatering	Annual Mean	<0.87		
			Cake	Annual Max	<0.87		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020	ND	160	1200
			Dewatering	01/28/2020	ND	120	400
			Cake	04/21/2020	ND	7.6	25
				07/21/2020	ND	53	180
				Annual Mean	<160		
				Annual Max	<160		
		mg/kg dry	Plant 2	11/17/2020	ND	0.75	1.7
		weight	Dewatering	Annual Mean	<0.75		
		-	Cake	Annual Max	<0.75		
p,p'-DDT	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		460	1300
		10.0.5	Dewatering	01/28/2020		130	430
			Cake	04/21/2020		7.3	24
				07/21/2020		120	400
				Annual Mean	<460	120	100
				Annual Max	<460		
		mg/kg dry	Plant 1	11/17/2020		1.4	2.0
		weight	ght Dewatering	Annual Mean	<1.4	1.7	2.0
				Annual Max	<1.4		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020		400	1200
		µg/kg ury	Dewatering	01/28/2020		120	400
			Cake	04/21/2020		7.6	25
				07/21/2020		53	180
				Annual Mean	<400		
		and a flat and a state of	Diss t 0	Annual Max	<400	4.0	4 7
		mg/kg dry	Plant 2	11/17/2020		1.2	1.7
		weight	Dewatering	Annual Mean	<1.2		
			Cake	Annual Max	<1.2		
Total DDTs	EPA 8081A	µg/kg dry	Plant 1	01/21/2020			
			Dewatering	01/28/2020			
			Cake	04/21/2020			
				07/21/2020			
				Annual Mean	0.0		
				Annual Max	0.0		
	EPA 8081A	µg/kg dry	Plant 2	01/21/2020			
			Dewatering	01/28/2020			
			Cake	04/21/2020			
				07/21/2020	0.0		
				Annual Mean	0.0		
				Annual Max	0.0		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
Tauanhana	EDA 00044		Location	04/04/0000	ND	40000	50000
Toxaphene	EPA 8081A	µg/kg dry	Plant 1	01/21/2020		12000	52000
			Dewatering Cake	01/28/2020		4300	17000
			Care	04/21/2020		240	970
				07/21/2020		4000	16000
				Annual Mean	<12000		
				Annual Max	<12000		
		mg/kg dry	Plant 1	11/17/2020		7.3	40
		weight	Dewatering	Annual Mean	<7.3		
			Cake	Annual Max	<7.3		
	EPA 8081A	µg/kg dry		01/21/2020		11000	46000
			Dewatering	01/28/2020		4000	16000
			Cake	04/21/2020		250	1000
				07/21/2020		1800	7100
				Annual Mean	<11000		
				Annual Max	<11000		
		mg/kg dry	Plant 2	11/17/2020	ND	6.3	34
		weight	Dewatering	Annual Mean	<6.3		
			Cake	Annual Max	<6.3		
PCBs							
PCB 1016	EPA 8082	µg/kg dry	Plant 1	01/21/2020	ND	95	200
			Dewatering	04/21/2020	ND	160	480
			Cake	07/21/2020		68	200
				10/20/2020		98	210
				Annual Mean	<160		
				Annual Max	<160		
	EPA 8082	µg/kg dry	Plant 2	01/21/2020		87	180
		pg/kg ary	Dewatering	04/21/2020		180	520
			Cake	07/21/2020		61	180
				10/20/2020		87	180
				Annual Mean	<180	07	100
				Annual Max	<180		
PCB 1221	EPA 8082	µg/kg dry	Plant 1	01/21/2020		120	200
FGD 1221	LFA 0002	µg/kg ury	Dewatering	04/21/2020		160	480
			Cake	07/21/2020		68	-
			Cake				200
				10/20/2020		120	210
				Annual Mean	<160		
	554.0000			Annual Max	<160		4.0.0
	EPA 8082	µg/kg dry	Plant 2	01/21/2020		110	180
			Dewatering Cake	04/21/2020		180	520
			Cake	07/21/2020		61	180
				10/20/2020		110	180
				Annual Mean	<180		
				Annual Max	<180		
PCB 1232	EPA 8082	µg/kg dry	Plant 1	01/21/2020		130	200
			Dewatering	04/21/2020		160	480
			Cake	07/21/2020		68	200
				10/20/2020		130	210
				Annual Mean	<160		
				Annual Max	<160		
	EPA 8082	µg/kg dry	Plant 2	01/21/2020	ND	120	180
			Dewatering	04/21/2020	ND	180	520
			Cake	07/21/2020		61	180
				10/20/2020		120	180
				Annual Mean	<180		
				Annual Max	<180		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
	FRA 0000		Location	0.4/0.4/0.000		0.1	0.0.0
PCB 1242	EPA 8082	µg/kg dry	Plant 1	01/21/2020		61	200
			Dewatering	04/21/2020		160	480
			Cake	07/21/2020		68	200
				10/20/2020		63	210
				Annual Mean	<160		
				Annual Max	<160		
	EPA 8082	µg/kg dry	Plant 2	01/21/2020	ND	56	180
			Dewatering	04/21/2020	ND	180	520
			Cake	07/21/2020	ND	61	180
				10/20/2020	ND	56	180
				Annual Mean	<180		
				Annual Max	<180		
PCB 1248	EPA 8082	µg/kg dry	Plant 1	01/21/2020	ND	63	200
		13 3 5	Dewatering	04/21/2020		160	480
			Cake	07/21/2020		68	200
				10/20/2020		65	210
				Annual Mean	<160	00	210
				Annual Max	<160		
	EPA 8082	ua/ka day	Plant 2	01/21/2020		58	180
	EFA 0002	µg/kg dry	Dewatering	04/21/2020		180	520
			Cake				
			Jane	07/21/2020		61	180
				10/20/2020		58	180
				Annual Mean	<180		
				Annual Max	<180		
PCB 1254	EPA 8082	µg/kg dry	Plant 1	01/21/2020		61	200
			Dewatering	04/21/2020	ND	160	480
			Cake	07/21/2020	ND	68	200
				10/20/2020	ND	63	210
				Annual Mean	<160		
				Annual Max	<160		
	EPA 8082	µg/kg dry	kg dry Plant 2 Dewatering	01/21/2020	ND	56	180
				04/21/2020	ND	180	520
			Cake	07/21/2020	ND	61	180
				10/20/2020		56	180
				Annual Mean	<180		
				Annual Max	<180		
PCB 1260	EPA 8082	µg/kg dry	Plant 1	01/21/2020		61	200
1001200		pg/kg dry	Dewatering	04/21/2020		160	480
			Cake	07/21/2020		68	200
			Cuito	10/20/2020		63	210
				Annual Mean	<160	03	210
			Diart 0	Annual Max	<160	50	100
	EPA 8082	µg/kg dry	Plant 2	01/21/2020		56	180
			Dewatering	04/21/2020		180	520
			Cake	07/21/2020		61	180
				10/20/2020		56	180
				Annual Mean	<180		
				Annual Max	<180		
PCB_HR_DM	EPA 8082	µg/kg dry	Plant 1	04/21/2020	ND	160	480
			Dewatering	Annual Mean	<160		
			Cake	Annual Max	<160		
	EPA 8082	μg/kg dry Plant 2	Plant 2	04/21/2020		180	520
		,	Dewatering	Annual Mean	<180		

Parameter	Method	Units	Sample	Sample Date	Result	MDL	RL
		u e /l ce de c	Location	04/04/0000	0		
Total PCBs	EPA 8082	µg/kg dry	Plant 1 Dewatering	04/21/2020			
			Cake	07/21/2020			
			Cake	10/20/2020			
				Annual Mean	(
	EDA 0000		Disust 0	Annual Max	(-	
	EPA 8082	µg/kg dry	Plant 2	04/21/2020			
			Dewatering Cake	07/21/2020			
			Cake	10/20/2020 Annual Mean			
					(
				Annual Max	()	
Herbicides							
2,4,5-TP (Silvex)	EPA 8151A	µg/kg dry	Plant 1	01/21/2020		140	278
			Dewatering	07/21/2020		730	1460
			Cake	Annual Mean	<730		
				Annual Max	<730		
	EPA 8151A	µg/kg dry	Plant 2	01/21/2020		120	242
			Dewatering	07/21/2020		590	1180
			Cake	Annual Mean	<590		
				Annual Max	<590		
2,4-D	EPA 8151A	µg/kg dry	Plant 1	01/21/2020		1800	3700
			Dewatering	07/21/2020	ND	9700	19500
			Cake	Annual Mean	<9700		
				Annual Max	<9700		
	EPA 8151A	µg/kg dry	Plant 2	01/21/2020		1600	3230
			Dewatering	07/21/2020	ND	7800	15700
			Cake	Annual Mean	<7800		
				Annual Max	<7800		
Pentachloropheno	EPA 8151A	µg/kg dry	Dewatering	01/21/2020		180	370
I				07/21/2020	ND	970	1950
			Cake	Annual Mean	<970		
				Annual Max	<970		
	EPA 8151A	µg/kg dry	Plant 2	01/21/2020	ND	160	323
			Dewatering	07/21/2020	ND	780	1570
			Cake	Annual Mean	<780		
				Annual Max	<780		
Dioxins/Furans							
2,3,7,8-TCDD	EPA 1613B	pg/g dry	Plant 1	01/21/2020	ND	2.5	18
			Dewatering	04/21/2020		2.7	23
			Cake	07/21/2020		2.6	19
				10/20/2020		4.9	21
				Annual Mean	4.4 DNQ		
				Annual Max	7.4 DNQ		
	EPA 1613B	pg/g dry	Plant 2	01/21/2020	ND	1.8	17
	-	100-5	Dewatering	04/21/2020		3.9	28
			Cake	07/21/2020		1.8	15
				10/20/2020		3.7	17
				Annual Mean	<3.9		
				Annual Max	<3.9		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Other			Location				
Asbestos	EPA/600/R-93/116	%	Plant 1	01/21/2020			1
A3D63103	LF A/000/11-33/110	70	Dewatering	04/21/2020			1
			Cake	07/21/2020			1
				10/20/2020			1
				Annual Mean		0	-
				Annual Max		0	
	EPA/600/R-93/116	%	Plant 2	01/21/2020			1
		/0	Dewatering	04/21/2020			1
			Cake	07/21/2020			1
				10/20/2020			1
				Annual Mean		0	
				Annual Max		0	
Tentatively Identi	fied Compounds						
.Alpha	EPA 8270C	µg/kg dry	Plant 1	10/20/2020	260000		41000
methylstyrene		pg/ng ary	Dewatering	Annual Mean	260000		11000
		Cake		Annual Max	260000		
.GAMMA	EPA 8270C	µg/kg dry	Plant 1	07/21/2020			32000
SITOSTEROL		µ9, ng ur j	Dewatering	Annual Mean	360000		02000
			Cake	Annual Max	360000		
	EPA 8270C	µg/kg dry	Plant 2	10/20/2020			37000
		µ-9,9 ∝.)	Dewatering	Annual Mean	640000		
			Cake	Annual Max	640000		
17-(1,5-	EPA 8270C	µg/kg dry	Plant 2	07/21/2020			28000
DIMETHYLHEXY		µ-9,9 ∝.)	Dewatering	Annual Mean	240000		
L)-10,13-			Cake	Annual Max	240000		
17-(1,5-	EPA 8270C		v Plant 2	10/20/2020			37000
DIMETHYLHEXY		F-999	Dewatering	Annual Mean	450000		
L)-10,13-			Cake	Annual Max	450000		
17-(1,5-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020			16000
DIMETHYLHEXY		13 3 3	Dewatering	Annual Mean	1200000		
L)-10,13-			Cake	Annual Max	1200000		
DIMETHYLHEX	EPA 8270C	µg/kg dry	Plant 2	01/21/2020			15000
		13 3 5	Dewatering	Annual Mean	1100000		
			Cake	Annual Max	1100000		
3-Penten-2-one, 4-	EPA 8270C	µg/kg dry	Plant 2	01/21/2020			15000
methyl-			Dewatering	Annual Mean	270000		
			Cake	Annual Max	270000		
9-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	420000		16000
OCTADECENOIC			Dewatering	Annual Mean	420000		
ACID, (E)-			Cake	Annual Max	420000		
Cholest-4-en-3-	EPA 8270C	µg/kg dry	Plant 1	01/21/2020	350000		16000
one			Dewatering	10/20/2020	310000		41000
			Cake		400000		41000
				Annual Mean	350000		
				Annual Max	400000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020	560000		15000
			Dewatering	04/21/2020	690000		21000
			Cake	07/21/2020	430000		28000
				10/20/2020	650000		37000
					750000		37000
				Annual Mean	620000		
				Annual Max	750000		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
Cholestan-3-ol	EPA 8270C	µg/kg dry	Plant 1	07/21/2020	250000		32000
		pg, ng or y	Dewatering	Annual Mean	250000		02000
			Cake	Annual Max	250000		
	EPA 8270C	µg/kg dry	Plant 2	10/20/2020			37000
			Dewatering	Annual Mean	410000	_	
			Cake	Annual Max	410000	_	
Cholestan-3-one	EPA 8270C	µg/kg dry	Plant 1	10/20/2020			41000
			Dewatering	Annual Mean	1800000	_	
			Cake	Annual Max	1800000		
	EPA 8270C	µg/kg dry	Plant 2	04/21/2020			21000
		13-3-5	Dewatering	10/20/2020			37000
			Cake	Annual Mean	1800000		
				Annual Max	1900000	_	
CHOLESTANE,	EPA 8270C	µg/kg dry	Plant 1	04/21/2020			20000
4,5-EPOXY-,		µ.g,g ∝)	Dewatering	07/21/2020			32000
(4.ALPHA.,5.ALP			Cake	Annual Mean	2000000		
H				Annual Max	2200000		
CHOLESTANOL	EPA 8270C	µg/kg dry	Plant 1	10/20/2020			41000
		pg, ng or y	Dewatering	10,20,2020	330000		41000
			Cake	Annual Mean	1200000		
				Annual Max	2100000		
n-Hexadecanoic	EPA 8270C	µg/kg dry	Plant 1	01/21/2020			16000
acid	217(02700	pg/itg dry	Dewatering	04/21/2020			20000
			Cake	10/20/2020			41000
				10/20/2020	630000		41000
				Annual Mean	550000		41000
				Annual Max	640000		
	EPA 8270C	ua/ka dry	ug/kg dry Plant 2 Dewatering Cake	01/21/2020			15000
		µg/kg dry		04/21/2020			21000
				10/20/2020			37000
				10/20/2020	590000		37000
				Annual Mean	440000		57000
				Annual Max	590000		
Octadec-9-Enoic	EPA 8270C	µg/kg dry	Plant 1	07/21/2020			32000
Acid		µg/kg dry	Dewatering Cake	10/20/2020			41000
				Annual Mean	280000		41000
				Annual Max	330000		
OCTADECANOIC	EPA 8270C	µg/kg dry	Plant 1	04/21/2020			20000
ACID	217(02700	pg/itg dry	Dewatering	Annual Mean	490000		20000
			Cake	Annual Max	490000		
Squalene	EPA 8270C	µg/kg dry	Plant 1	01/21/2020			16000
Oqualerie		µg/kg dry	Dewatering	07/21/2020			32000
			Cake	10/20/2020			41000
			Cuito	Annual Mean	450000		41000
				Annual Max	580000		
	EPA 8270C	µg/kg dry	Plant 2	01/21/2020			15000
		µg/kg uiy	Dewatering	07/21/2020			28000
			Cake	10/20/2020			37000
			Cano	Annual Mean	430000		51000
						_	
Totradacana		ua/ka dar	Plant 1	Annual Max	530000		41000
Tetradecane	EPA 8270C	µg/kg dry	Plant 1	10/20/2020			41000
			Dewatering Cake	Annual Mean	290000		
			Care	Annual Max	290000		

Parameter	Method	Units	Sample Location	Sample Date	Result	MDL	RL
UNKNOWN	NKNOWN EPA 8270C µs	µg/kg dry	Plant 1	01/21/2020	340000		16000
			Dewatering	04/21/2020	520000		20000
		Cake	07/21/2020	700000		32000	
			10/20/2020	520000		41000	
				380000		41000	
				Annual Mean	490000		
				Annual Max	700000		
	EPA 8270C	µg/kg dry	Plant 2 Dewatering	01/21/2020	310000		15000
				04/21/2020	830000		21000
			Cake	07/21/2020	470000		28000
				10/20/2020	680000		37000
					780000		37000
				Annual Mean	610000		
				Annual Max	830000		

DEFINITIONS AND FOOTNOTES

Definitions:

ND = Not Detected

DNQ = Detected, Not Quantified; represents estimated values above the method detection limit (MDL), but below the reporting limit (RL).

N/A = Not Applicable

Annual Mean:

If all results for a parameter were ND, the Annual Mean is reported as < the highest MDL for that parameter during the year. If only some results for a parameter were ND, the ND is replaced by the MDL value for calculating the Annual Mean For any parameter that had a DNQ result, the Annual Mean is also designated as DNQ.

Annual Max:

If all results for a parameter were ND, the Annual Max is reported as < the highest MDL for that parameter during the year. Quantified values take priority for determining the maximum (ND and DNQ values are ignored). If there are only ND and DNQ values, the highest DNQ value is reported as the maximum with a DNQ notation.

Footnotes:

- 8260B Results for 4/22/20 - Results are in wet weight becauses total solids was mistakenly not logged for this sample.

APPENDIX D

EPA Biosolids Annual Report Electronic Form, Plant No. 1 EPA Biosolids Annual Report Electronic Form, Plant No. 2 Biosolids Annual Report Landing Page / ORANGE COUNTY SD #1

NPDES ID: CAL110604 Facility Status: Active Facility Name: ORANGE COUNTY SD #1 10844 ELLIS AVENUE FOUNTAIN VALLEY, CA 92708-7018

View Annual Report

NPDES FORM 6100-035

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 BIOSOLIDS ANNUAL REPORT Form Approved. OMB No. 2040-0004. Exp. 03/31/2022

EPA's sewage sludge regulations require certain publicly owned treatment works (POTWs) and Class I sewage sludge management facilities to submit to a Sewage Sludge (Biosolids) Annual Report (see 40 CFR 503.18 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118)), Facilities that must submit a Sewage Sludge (Biosolids) Annual Report include POTWs with a design flow rate equal to or greater than one million gallons per day, POTWs that serve 10,000 people or more, Class I Sludge Management Facilities (as defined by 40 CFR 503.9 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_19)), and facilities otherwise required to file this report (e.g., permit condition, enforcement action, state law). This is the electronic form for Sewage Sludge (Biosolids) Annual Report filers to use if they are located in one of the states, tribes, or territories (https://www.epa.gov/npdes/npdes-state-program-information) where EPA administers the Federal biosolids program.

For the purposes of this form, the term 'sewage sludge (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_19)' also refers to the material that is commonly referred to as 'biosolids'. EPA does not have a regulatory definition for biosolids but this material is commonly referred to as sewage sludge that is placed on, or applied to the land to use the beneficial properties of the material as a soil amendment, conditioner, or fertilizer. EPA's use of the term 'biosolids' in this form is to confirm that information about beneficially used sewage sludge (a.k.a. biosolids) should be reported on this form.

Public Availability of Information Submitted on and with General Permit Reports

EPA may make all the information submitted through this form (including all attachments) available to the public without further notice to you. Do not use this online form to submit personal information (e.g., non-business cell phone number or non-business email address), confidential business information (CBI), or if you intend to assert a CBI claim on any of the submitted information. Pursuant to 40 CFR 2.203(a), EPA is providing you with notice that all CBI claims must be asserted at the time of submission. EPA cannot accommodate a late CBI claim to cover previously submitted information because efforts to protect the information requested in this form, if persons wish to assert a CBI claim we direct submitters to contact the NPDES eReporting Help Desk (NPDESeReporting@epa.gov (mailto:NPDESereporting@epa.gov)) for further guidance.

Please note that EPA may contact you after you submit this report for more information regarding your sewage sludge management program.

This collection of information is approved by OMB under the Paperwork Reduction Act, 44 U.S.C. 3501 et seq. (OMB Control No. 2040-0004). Responses to this collection of information are mandatory in accordance with EPA regulations (40 CFR 503.18, 503.28, and 503.48). An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number. The public reporting and recordkeeping burden for this collection of information are estimated to average 3 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates and any suggested methods for minimizing respondent burden including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (2821T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Program Information

Please select all of the following that apply to your obligation to submit a Sewage Sludge (Biosolids) Annual Report in compliance with 40 CFR part 503. The facility is:

- a POTW with a design flow rate equal to or greater than one million gallons per day
- a POTW that serves 10,000 people or more

In the reporting period, did you manage your sewage sludge or biosolids using any of the following management practices: land application, surface disposal, or incineration?

I YES □ NO

If your facility is a POTW, please provide the estimated total amount of sewage sludge produced at your facility for the reporting period (in dry metric tons). If your facility is not a POTW, please provide the estimated total amount of biosolids produced at your facility for the reporting period (in dry metric tons). 30499

Reporting Period Start Date: 01/01/2020

Reporting Period End Date: 12/31/2020

Treatment Processes

Processes to Significantly Reduce Pathogens (PSRP): Anaerobic Digestion

Processes to Further Reduce Pathogens (PFRP):

Physical Treatment Options:

Preliminary Operations (e.g., sludge grinding, degritting, blending) Thickening (e.g., Gravity and/or Flotation Thickening, Centrifugation, Belt Filter Press, Vacuum Filter, Screw Press)

Other Processes to Manage Sewage Sludge:

Methane or Biogas Capture and Recovery

Analytical Methods

Did you or your facility collect sewage sludge or biosolids samples for laboratory analysis? YES ONO

Analytical Methods

- EPA Method 6010 Arsenic (ICP-OES)
- EPA Method 6010 Cadmium (ICP-OES)
- EPA Method 6010 Chromium (ICP-OES)
- EPA Method 6010 Copper (ICP-OES)
- EPA Method 6010 Lead (ICP-OES)
- EPA Method 7471 Mercury (CVAA)
- EPA Method 6010 Molybdenum (ICP-OES)
- EPA Method 6010 Nickel (ICP-OES)
- EPA Method 6010 Selenium (ICP-OES)
- EPA Method 6010 Zinc (ICP-OES)
- EPA Method 6010 Beryllium (ICP-OES)
- EPA Method 351.2 Total Kjeldahl Nitrogen
- Standard Method 4500-N Nitrogen
- Standard Method 2540 Total Solids
- Standard Method 2540 Volatile Solids
- EPA Method 9045 pH (> 7% solids)

Other Analytical Methods

 Other Nitrogen Analytical Method Other Analytical Methods Text Area:

EPA 300.0

Sludge Management - Land Application

ID: 001

Amount: 16708

Management Practice Detail: Distribution and Marketing - Compost

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Preparer

NPDES ID of handler:

Facility Information: Synagro - Nursery Products PO Box 1439 Helendale, CA 92342

Pathogen Class: Class A EQ

Sewage Sludge or Biosolids Pathogen Reduction Options:

Class A-Alternative 5: PFRP 1: Composting

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 2/83

Venny Vasquez Site Manager 760-265-5210 vvasquez@synagro.com

Contact Information:

EPA Biosolids

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- **Option 1 Volatile Solids Reduction**
- Option 5 Aerobic Processing (Thermophilic Aerobic Digestion/Composting)

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13? Monitoring Data INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B). **Compliance Monitoring Periods** INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)). Compliance Monitoring Event No. 1 **Compliance Monitoring Period Start Date: Compliance Monitoring Period End Date:** 01/31/2020 01/01/2020 Do you have analytical results to report for this monitoring period? YES ONO Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.] □YES INO Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503 113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter. If No Data, Select One Of The Sewage Sludge or Biosolids Value Parameter Concentration (mg/kg, dry-weight basis Qualifier Parameter or Pass/Fail) Following Arsenic = 5.3 Cadmium = 2.3 = 300 Copper Lead = 14 Mercury < 1 Molybdenum = 13 Nickel = 27 Selenium = 9.3 Zinc = 580

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

2/17/2021

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.3	
Cadmium	=	2.3	
Copper	=	300	
Lead	=	14	
Mercury	<	1	
Nickel	=	27	
Selenium	=	9.3	
Zinc	=	580	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	35000	

Compliance Monitoring Event No. 2	Compliance Monitoring Period Start Date:	Compliance Monitoring Period End Date:
	02/01/2020	02/29/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The
Parameter	Qualifier		Following
Arsenic	=	5.9	

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Cadmium	=	3.4	
Copper	=	280	
Lead	=	18	
Mercury	<	1	
Molybdenum	=	14	
Nickel	=	26	
Selenium	=	8.9	
Zinc	=	610	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.9	
Cadmium	=	3.4	
Copper	=	280	
Lead	=	18	
Mercury	<	1	
Nickel	=	26	
Selenium	=	8.9	
Zinc	=	610	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	31000	

Compliance Monitoring Event No. 3

Compliance Monitoring Period Start Date: 03/01/2020

Compliance Monitoring Period End Date: 03/31/2020

EPA Biosolids

YES □NO

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.6	
Cadmium	=	3.6	
Copper	=	340	
Lead	=	17	
Mercury	<	1	
Molybdenum	=	14	
Nickel	=	31	
Selenium	=	12	
Zinc	=	710	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.6	
Cadmium	=	3.6	
Copper	=	340	
Lead	=	17	
Mercury	<	1	

2/17/2021

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	or Pass/Fail)	tion (mg/kg, dry-weight basis	If No Data, Select One Of The Following
Nickel	=	31		
Selenium	=	12		
Zinc	=	710		
Report the average concentration applied to land during the complia		, . .	N plus Nitrate-Nitrite, as N) in the s	ewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	ntration (mg/kg, dry-weight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitr	rite) =	36000		
ompliance Monitoring Event No. 4 o you have analytical results to re		Compliance Monitoring P 04/01/2020 toring period?		npliance Monitoring Period End Date: 30/2020
		•		entrations for this compliance monitorin iosolids for this compliance monitoring
-	nce with 40 CFR 50	3.13(a) (http://www.ecfr.gov/	cgi-bin/text-idx?node=pt40.32.503	&rgn=div5#se40.32.503_113), EPA's
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids	the with 40 CFR 50 on of bulk sewage si ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. In monitoring data s icator Code" if you a Value	3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ichould be reported in milligra are reporting no data for the Parameter Concentra	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the ediv5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter	And the set of the set	3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b should be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail)	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the =div5#se40.32.503_113) to identify nt basis. neter.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter	ace with 40 CFR 50 on of bulk sewage si ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s icator Code" if you a Value Qualifier =	3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b whould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the -div5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	And the set of the set	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b should be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the -div5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	Ince with 40 CFR 50. In of bulk sewage sitions in the sewage sitions in the sewage sitions in the sewage siticator code sitisticator for the sewage site site site site site site site sit	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 31	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the -div5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	Ince with 40 CFR 50. In of bulk sewage signations in the sewage signation of 40 CFR 503. In of 40 CFR 503. Int monitoring data signature Interview Value Qualifier = <	3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 31	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the -div5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	Ince with 40 CFR 50. In of bulk sewage sitions in the sewage sitions in the sewage sitions in the sewage siticator code sitisticator for the sewage site site site site site site site sit	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 31 11 11 11	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the -div5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	Ince with 40 CFR 50. In of bulk sewage signations in the sewage signation of 40 CFR 503. In of 40 CFR 503. Int monitoring data signature Interview Value Qualifier = <	3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 31	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the -div5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	Ince with 40 CFR 50. In of bulk sewage sitiations in the sewage sitations in the sewage sitations in the sewage site of 40 CFR 503. In of bulk sewage site of the	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 31 11 11 11	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the -div5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Wolybdenum	Ince with 40 CFR 50. In of bulk sewage size ations in the sewage ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. Int monitoring data size icator Code" if you a Value Qualifier = <	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 11 11 11 11 11 11 11 15	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the ediv5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium	Ince with 40 CFR 50. on of bulk sewage signations in the sewage signations in the sewage signations in the sewage signations in the sewage signation of 40 CFR 503. Image: Market signature sis signature sin signate signature signature sis signature signature	3.13(a) (http://www.ecfr.gov/ Judge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 11 11 11 11 11 11 11 11 11 11 11 12 13 13 14 15 9.2	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the ediv5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Wolybdenum Nickel Selenium Zinc Athogen And Vector Attraction Re Report the pathogen densities in t	Ince with 40 CFR 50. on of bulk sewage signations in the sewage signations in the sewage signations in the sewage signations in the sewage signation of 40 CFR 503. Image: Strategy of the sewage signation of the sewage signate signation of the sewage signate signation	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the 0 Parameter Concentra or Pass/Fail) 2.1 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 11 11 11 13 11 13 11 15 9.2 1 110 Disolids that was applied lids. When using the Class l	cgi-bin/text-idx?node=pt40.32.503& d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ims per kilogram (mg/kg), dry weigl sampling period or particular parar tion (mg/kg, dry-weight basis	Brgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the ediv5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Vickel Selenium Zinc Athogen And Vector Attraction Re Report the pathogen densities in t pathogen density for Class A sewa the density of fecal coliform in Cla	Ince with 40 CFR 50. In of bulk sewage sizions in the sewage sizions in the sewage size to solve the sewage size to the sewage site to the sewage site to the sewage site to the sewage site to the	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the 0 Parameter Concentra or Pass/Fail) 2.1 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 11 11 11 13 11 13 11 15 9.2 1 110 Disolids that was applied lids. When using the Class l	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar tion (mg/kg, dry-weight basis tion (mg/kg, dry-weight basis	Bargn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the ediv5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The Following If No Data, Select One Of The Following If no Data, Select One Of The Following If No Data, Select One Of The Following
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc athogen And Vector Attraction Re Report the pathogen densities in t pathogen density for Class A sewa	Ince with 40 CFR 50. In of bulk sewage sizions in the sewage sizions in the sewage size to solve the sewage size to the sewage site to the sewage site to the sewage site to the sewage site to the	3.13(a) (http://www.ecfr.gov/ludge or sewage sludge sold ludge or sewage sludge sold e sludge exceed a land appl 3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-b ihould be reported in milligra are reporting no data for the Parameter Concentra or Pass/Fail) 2.1 1 11 11 11 12 13 14 15 9.2 1 110 110 or biosolids that was applied ids. When using the Class I e or biosolids [see 40 CFR 5	cgi-bin/text-idx?node=pt40.32.5038 d or gave away sewage sludge in a ication ceiling pollutant limit (Table 13)). EPA will compare the pollutan in/text-idx?node=pt40.32.503&rgn= ms per kilogram (mg/kg), dry weigl sampling period or particular parar tion (mg/kg, dry-weight basis tion (mg/kg, dry-weight basis	Bargn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the ediv5#se40.32.503_113) to identify nt basis. neter. If No Data, Select One Of The Following Following In this SSUID. Please report the maximum on, please report the geometric mean of

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 7/83

EPA Biosolids

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	2.1	
Cadmium	<	1	
Copper	=	31	
Lead	=	11	
Mercury	<	1	
Nickel	=	9.2	
Selenium	<	1	
Zinc	=	110	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	33000	

Compliance Monitoring Event No. 5	Compliance Monitoring Period Start Date: 05/01/2020	Compliance Monitoring Period End Date: 05/31/2020
Do you have analytical results to report for this monito	oring period? 🕑 YES 🗆 NO	

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following			
Arsenic	=	5.1				
Cadmium	=	2.5				
Copper	=	240				
Lead	=	13				
Mercury	<	1				

2/17/2021

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Molybdenum	=	12	
Nickel	=	22	
Selenium	=	8.3	
Zinc	=	470	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	14	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	56.76	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following		
Arsenic	=	5.1			
Cadmium	=	2.5			
Copper	=	240			
Lead	=	13			
Mercury	<	1			
Nickel	=	22			
Selenium	=	8.3			
Zinc	=	470			

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Total Nitrogen (TKN plus Nitrate-Nitrite) =		27000	
		27000	
Compliance Monitoring Event No. 6	Comp 06/01	5	Compliance Monitoring Period End Date: 06/30/2020
Do you have analytical results to report for this	monitoring p	period? 🕑 YES 🗆 NO	

🗆 YES 🗹 NO

EPA Biosolids

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.6	
Cadmium	=	3.2	
Copper	=	310	
Lead	=	15	
Mercury	<	1	
Molybdenum	=	15	
Nickel	=	25	
Selenium	=	10	
Zinc	=	550	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.66	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.6	
Cadmium	=	3.2	
Copper	=	310	
Lead	=	15	
Mercury	<	1	
Nickel	=	25	
Selenium	=	10	
Zinc	=	550	

2/17/2021

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg,	dry-weight	If No Data, Select One Of The Following	
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	31000				
ompliance Monitoring Event No. 7		ompliance Monitoring I 17/01/2020	Period Start Date:		pliance Monitoring Period End Date: 31/2020	
o you have analytical results to repor	for this monitor	ring period? 🛛 🗹 Y	ES 🗆 NO			
					entrations for this compliance monitorin osolids for this compliance monitoring	
aximum Concentration Data for All Se	wage Sludge or	Biosolids Applied to L	and			
period for this SSUID. In accordance w regulations prohibit land application of sewage sludge pollutant concentration	with 40 CFR 503.1 bulk sewage slud s in the sewage s ode=pt40.32.5038 of 40 CFR 503.13 onitoring data sho	3(a) (http://www.ecfr.gov ge or sewage sludge sol ludge exceed a land app .rgn=div5#se40.32.503(http://www.ecfr.gov/cgi-l uld be reported in milligr.	//cgi-bin/text-idx?nd d or gave away se blication ceiling poll 113)). EPA will com bin/text-idx?node=p ams per kilogram (ode=pt40.32.5038 wage sludge in a utant limit (Table pare the pollutant ot40.32.503&rgn= mg/kg), dry weigh	bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis.	
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	Parameter Concentration (mg/kg, dry-weight basis If No or Pass/Fail) Follor			
Arsenic	=	5.1				
Cadmium	=	3	3			
Copper	=	230				
ead	=	4.2				
<i>l</i> ercury	<	1				
lolybdenum	=	12				
lickel	=	24				
Selenium	=	9.7				
Zinc	=	450				
	ewage sludge or l sludge or biosolid	s. When using the Class	B – Alternative 1 n		r this SSUID. Please report the maximum n, please report the geometric mean of	
Sewage Sludge or Biosolids Paramete	ər	Value Qualifier	Value	If No Data, Se	lect One Of The Following	
Fecal Coliform		<	2			
Salmonella		<	3			
Report the vector attraction reduction of monitoring period for this SSUID.	data for the biosol	ids or sewage sludge tha	at was placed on a	n active sewage s	ludge unit during the compliance	
Sewage Sludge or Biosolids Paramete	ər	Value Qualifier	Value	If No Data, Se	lect One Of The Following	
Solids, total volatile percent removal		=	64			

EPA Biosolids

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.1	
Cadmium	=	3	
Copper	=	230	
Lead	=	4.2	
Mercury	<	1	
Nickel	=	24	
Selenium	=	9.7	
Zinc	=	450	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	26000	

Compliance Monitoring Event No. 8	Compliance Monitoring Period Start Date:			Compliance Monitoring Period End Date:
	08/01/2020			08/31/2020
Do you have analytical results to report for this monitor	oring period?	🗹 YES		

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	2.8	
Copper	=	270	
Lead	=	16	
Mercury	=	0.94	
Molybdenum	=	12	
Nickel	=	24	
Selenium	=	10	
Zinc	=	530	

EPA Biosolids

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	50	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	2.8	
Copper	=	270	
Lead	=	16	
Mercury	=	0.94	
Nickel	=	24	
Selenium	=	10	
Zinc	=	530	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	29000	

Compliance Monitoring Event No. 9	Compliance Monitoring Period Start Date:	Compliance Monitoring Period End Date:
	09/01/2020	09/30/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.3	
Cadmium	=	2.9	
Copper	=	260	
Lead	=	17	
Mercury	<	1	
Molybdenum	=	14	
Nickel	=	24	
Selenium	=	9.2	
Zinc	=	500	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.3	
Cadmium	=	2.9	
Copper	=	260	
Lead	=	17	
Mercury	<	1	
Nickel	=	24	
Selenium	=	9.2	
Zinc	=	500	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	24000	

Compliance Monitoring Event No. 10

Compliance Monitoring Period Start Date: 10/01/2020

Compliance Monitoring Period End Date: 10/31/2020

Do you have analytical results to report for this monitoring period? 🛛 🗹 Y	Do you hav	ve analytical resul	ts to report for th	is monitoring period?	🗹 YES
--	------------	---------------------	---------------------	-----------------------	-------

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.2	
Cadmium	=	2.7	
Copper	=	240	
Lead	=	16	
Mercury	<	1	
Molybdenum	=	16	
Nickel	=	22	
Selenium	=	9.8	
Zinc	=	530	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.46	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	lf No Data, Select One Of The Following
Arsenic	=	5.2	
Cadmium	=	2.7	
Copper	=	240	
Lead	=	16	

EPA Biosolids

Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail)	is If No Data, Select One Of The Following
Mercury	<	1	
Nickel	=	22	
Selenium	=	9.8	
Zinc	=	530	
Report the average concentration applied to land during the complia		basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in iod for this SSUID.	the sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
otal Nitrogen (TKN plus Nitrate-Nit	rite) =	29000	
	ant concentrations	toring period?	· · · ·
e you reporting maximum polluta ant? [For example, this will be the riod.] YES YNO ximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutant	All Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewag [x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s	s that are equivalent to the monthly average pollutant collected and analyzed one sample of sewage sludge	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Illutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis.
e you reporting maximum polluta ent? [For example, this will be th riod.] YES YNO eximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Tabl- noncompliance events. All pollutan Please only select a "No Data Ind	All Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewag [x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s	or Biosolids Applied to Land contractions in the biosolids or sewage sludge that was app 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 ludge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (7) 33krgn=div5#se40.32.503_113)). EPA will compare the po 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503. should be reported in milligrams per kilogram (mg/kg), dry	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring .503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more Fable 1 of 40 CFR 503.13 Ilutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ent? [For example, this will be th riod.] YES YNO ximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applications sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Ind Bewage Sludge or Biosolids Parameter	All Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewage lx?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s icator Code" if you a	or Biosolids Applied to Land collected and analyzed one sample of sewage sludge or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was app 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 ludge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (1) 3&rgn=div5#se40.32.503_113)). EPA will compare the po 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 should be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Illutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ent? [For example, this will be th riod.]	All Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewag lx?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s icator Code" if you Value Qualifier	or Biosolids Applied to Land collected and analyzed one sample of sewage sludge or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was app 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 ludge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (1 03&rgn=div5#se40.32.503_113)). EPA will compare the po 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 should be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail)	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Illutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ant? [For example, this will be the riod.] YES YON ximum Concentration Data for A This section summarizes the maxi- period for this SSUID. In accordar regulations prohibit land application sewage sludge pollutant concentr- (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Tabl- noncompliance events. All pollutan Please only select a "No Data Indi- ewage Sludge or Biosolids arameter rsenic cadmium	All Sewage Sludge imum pollutant com- nee with 40 CFR 50 on of bulk sewage s ations in the sewage (x?node=pt40.32.5C e 1 of 40 CFR 503. nt monitoring data s icator Code" if you Value Qualifier =	as that are equivalent to the monthly average pollutant of collected and analyzed one sample of sewage sludge or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was application application ceiling pollutant limit (7) 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 ludge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (7) 3&rgn=div5#se40.32.503_113)). EPA will compare the porta 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 should be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail) 5.1	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Illutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ant? [For example, this will be the riod.] YES YNO ximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Ind ewage Sludge or Biosolids arameter rsenic admium	All Sewage Sludge imum pollutant con- nce with 40 CFR 50 on of bulk sewage ix?node=pt40.32.50 e 1 of 40 CFR 503, nt monitoring data s icator Code" if you Value Qualifier = =	as that are equivalent to the monthly average pollutant of collected and analyzed one sample of sewage sludge or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was application and application ceiling pollutant limit (7) 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 Judge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (7) J3&rgn=div5#se40.32.503_113)). EPA will compare the poil 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 should be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail) 5.1 3.1	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Ilutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ent? [For example, this will be the riod.]	All Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewage lx?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s icator Code" if you a Value Qualifier = = =	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applied or sewage sludge sold or gave away sewage sludge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (103&rgn=div5#se40.32.503_113)). EPA will compare the poll3 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13) is hould be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail) 5.1 3.1	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Ilutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ent? [For example, this will be th riod.] YES YO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All polluta Please only select a "No Data Ind Bewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Aercury	All Sewage Sludge imum pollutant com- nee with 40 CFR 50 on of bulk sewage s ations in the sewage ix?node=pt40.32.5C e 1 of 40 CFR 503. nt monitoring data s icator Code" if you i Value Qualifier = = = = =	as that are equivalent to the monthly average pollutant of collected and analyzed one sample of sewage sludge or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was application ceiling pollutant limit (7) 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 Judge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (7) J3&rgn=div5#se40.32.503_113)). EPA will compare the poll3 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 should be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail) 5.1 3.1 250 17	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Ilutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ent? [For example, this will be th riod.] YES YNO eximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Tabl- noncompliance events. All pollutan	All Sewage Sludge imum pollutant com- nee with 40 CFR 50 on of bulk sewage s ations in the sewage kx?node=pt40.32.5C e 1 of 40 CFR 503. nt monitoring data s icator Code" if you Value Qualifier = = = = = = <	as that are equivalent to the monthly average pollutant of collected and analyzed one sample of sewage sludge or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was app 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 judge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (13) j3&rgn=div5#se40.32.503_113)). EPA will compare the po 130 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 should be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail) 5.1 3.1 250 17 1	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Ilutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.
e you reporting maximum polluta ent? [For example, this will be th riod.] YES INO eximum Concentration Data for A This section summarizes the maxi- period for this SSUID. In accordar regulations prohibit land applications sewage sludge pollutant concentr- (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Tabl- noncompliance events. All pollutan Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	All Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewage Ix?node=pt40.32.50 e 1 of 40 CFR 503, nt monitoring data s icator Code" if you a Value Qualifier = = = = = = = = = = =	as that are equivalent to the monthly average pollutant of collected and analyzed one sample of sewage sludge or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applied or sewage sludge or sewage sludge sold or gave away sewage sludge e sludge exceed a land application ceiling pollutant limit (7)38 rgn=div5#se40.32.503_113)). EPA will compare the poll 31 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503) 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503) 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503) 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503) should be reported in milligrams per kilogram (mg/kg), dry are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight bas or Pass/Fail) 5.1 3.1 250 17 1 14	concentrations for this compliance monitoring or biosolids for this compliance monitoring blied to land during the compliance monitoring 2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Ilutant concentrations in this section against the &rgn=div5#se40.32.503_113) to identify weight basis. parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	65.79	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.1	
Cadmium	=	3.1	
Copper	=	250	
Lead	=	17	
Mercury	<	1	
Nickel	=	24	
Selenium	=	9.3	
Zinc	=	550	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	31000	

Compliance Monitoring Event No. 12	Compliance Monito 12/01/2020	ring Peric	od Start Date:	Compliance Monitoring Period End Date: 12/31/2020
Do you have analytical results to report for this mon	itoring period?	🗹 YES		

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_srgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_srgn=div5#se40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.8	
Cadmium	=	1.7	
Copper	=	160	
Lead	=	15	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Mercury	<	1	
Molybdenum	=	8.2	
Nickel	=	13	
Selenium	=	5.8	
Zinc	=	330	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.8	
Cadmium	=	1.7	
Copper	=	160	
Lead	=	15	
Mercury	<	1	
Nickel	=	13	
Selenium	=	5.8	
Zinc	=	330	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	27000	

ID: 002

Amount: 698

Management Practice Detail: Distribution and Marketing - Compost

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Preparer

NPDES ID of handler:

Facility Information:

Synagro - South Kern Compost Manufacturing Facility P.O. Box 265 Taft, CA 93268 Rob Rankin Site Manager 661-765-2200 rrankin@synagro.com

Contact Information:

EPA Biosolids

Pathogen Class: Class A EQ

Sewage Sludge or Biosolids Pathogen Reduction Options:

Class A-Alternative 5: PFRP 1: Composting

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- Option 1 Volatile Solids Reduction
- Option 5 Aerobic Processing (Thermophilic Aerobic Digestion/Composting)

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

□YES INO □UNKNOWN

Monitoring Data

INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B).

Compliance Monitoring Periods

INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)).

Compliance Monitoring Event No. 1

Compliance Monitoring Period Start Date: 01/01/2020

Compliance Monitoring Period End Date:

01/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)), to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	lf No Data, Select One Of The Following
Arsenic	=	6.5	
Cadmium	=	4	
Copper	=	300	
Lead	=	20	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Mercury	<	1	
Molybdenum	=	21.4	
Nickel	=	31	
Selenium	=	13	
Zinc	=	690	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.9	
Cadmium	=	2.97	
Copper	=	289	
Lead	=	18.5	
Mercury	<	0.42	
Nickel	=	28.3	
Selenium	<	6.6	
Zinc	=	578	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	31000	
Compliance Monitoring Event No. 2	Comp 02/01/		Compliance Monitoring Period End Date: 02/29/2020
Do you have analytical results to report f	or this monitoring p	eriod? 🗹 YES 🗆 NO	

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in the section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_13) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.6	
Cadmium	=	4	
Copper	=	300	
Lead	=	22	
Mercury	<	1	
Molybdenum	=	16	
Nickel	=	31	
Selenium	=	14	
Zinc	=	710	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5	
Cadmium	=	3.16	
Copper	=	298	
Lead	=	19.3	
Mercury	<	0.43	
Nickel	=	28.8	

Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Selenium	<	7.1	
Zinc	=	587	
Report the average concentration applied to land during the complia		basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the s od for this SSUID.	sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Niti	rite) =	33000	
ompliance Monitoring Event No. 3 o you have analytical results to re		03/01/2020 03/	npliance Monitoring Period End Date: /31/2020
aximum Concentration Data for A	II Sewage Sludge	or Biosolids Applied to Land	
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar	imum pollutant cont ince with 40 CFR 50 in of bulk sewage s ations in the sewag x?node=pt40.32.5C e 1 of 40 CFR 503, nt monitoring data s	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ludge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 3&rgn=div5#se40.32.503_113)). EPA will compare the pollutar 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn should be reported in milligrams per kilogram (mg/kg), dry weig are reporting no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 ht concentrations in this section against the =div5#se40.32.503_113) to identify ht basis.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutal Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter	imum pollutant conducted with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503, nt monitoring data s icator Code" if you Value Qualifier	centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ludge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 3&rgn=div5#se40.32.503_113)). EPA will compare the pollutar 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn should be reported in milligrams per kilogram (mg/kg), dry weig are reporting no data for the sampling period or particular parameter Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic	inum pollutant con ince with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. Int monitoring data s icator Code" if you a Value Qualifier =	centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ludge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table i3&rgn=div5#se40.32.503_113)). EPA will compare the pollutar 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn: 14 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn: 15 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn: 16 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn: should be reported in milligrams per kilogram (mg/kg), dry weig are reporting no data for the sampling period or particular parameter Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 5.9	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 at concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium	inum pollutant cont ince with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. int monitoring data s icator Code" if you i Value Qualifier = =	centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ludge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table i3&rgn=div5#se40.32.503_113)). EPA will compare the pollutart 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn: should be reported in milligrams per kilogram (mg/kg), dry weig are reporting no data for the sampling period or particular parameter Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 5.9 4.1	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 at concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutal Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium	inum pollutant contract with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s icator Code" if you Value Qualifier = = =	Description Sector 23.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 1udge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 38rgn=div5#se40.32.503_113)). EPA will compare the pollutart 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 38rgn=div5#se40.32.503_113)). EPA will compare the pollutart 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn should be reported in milligrams per kilogram (mg/kg), dry weig are reporting no data for the sampling period or particular paral Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 5.9 4.1 290	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 ht concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	inum pollutant contract with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503, nt monitoring data s icator Code" if you i Value Qualifier = = = = =	Description Sector 201 Sector	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 ht concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Ind Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	inum pollutant con ince with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. Int monitoring data s icator Code" if you i Value Qualifier = = = = = = <	centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ludge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table i33:3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 i34:3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 i34:3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i34:3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i34:3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i34:3(b) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i34:3(b) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i34:3(b) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i54:3(b) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i54:3(b) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i54:3(c) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i54:3(c) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgm i59:3(c) (http://weight basis i20:3(c) (http://weight basis i1	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 at concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The
This section summarizes the maximum period for this SSUID. In accordar regulations prohibit land applications sewage sludge pollutant concentric (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	imum pollutant control of the service with 40 CFR 50 on of bulk sewage stations in the sewage stations of 40 CFR 503. In monitoring data staticator Code" if you staticator Code" if you staticator Code" if you staticator and the sewage static	Description Sector 23.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 1udge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 33.4(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 1udge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 33.4(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 34.1 290 20 1 1 17	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 at concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The
This section summarizes the maximal period for this SSUID. In accordar regulations prohibit land applications prohibit land applications events and the second seco	Walue Qualifier = <t< td=""><td>centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ludge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 38rgn=div5#se40.32.503_113)). EPA will compare the pollutart 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn should be reported in milligrams per kilogram (mg/kg), dry weig are reporting no data for the sampling period or particular parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 5.9 4.1 290 20 1 17 29</td><td>&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 at concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The</td></t<>	centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ludge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 38rgn=div5#se40.32.503_113)). EPA will compare the pollutart 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn should be reported in milligrams per kilogram (mg/kg), dry weig are reporting no data for the sampling period or particular parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 5.9 4.1 290 20 1 17 29	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 at concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The
This section summarizes the maximum period for this SSUID. In accordar regulations prohibit land applications sewage sludge pollutant concentric (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	imum pollutant control of the service with 40 CFR 50 on of bulk sewage stations in the sewage stations of 40 CFR 503. In monitoring data staticator Code" if you staticator Code" if you staticator Code" if you staticator and the sewage static	Description Sector 23.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 1udge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 33.4(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 1udge or sewage sludge sold or gave away sewage sludge in a e sludge exceed a land application ceiling pollutant limit (Table 33.4(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 34.1 290 20 1 1 17	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 at concentrations in this section against the =div5#se40.32.503_113) to identify ht basis. meter. If No Data, Select One Of The

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 22/83

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.5	
Cadmium	=	3.5	
Copper	=	284	
Lead	=	18.4	
Mercury	<	0.42	
Nickel	=	28.4	
Selenium	<	6.1	
Zinc	=	698	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	31000	

Compliance Monitoring Event No. 4

Compliance Monitoring Period Start Date: 04/01/2020

Compliance Monitoring Period End Date: 04/30/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)), to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
=	9.7	
=	4.3	
=	258	
=	19	
<	1	
=	11.7	
	Qualifier = = = = = <	Qualifier or Pass/Fail) = 9.7 = 4.3 = 258 = 19 <

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	25	
Selenium	<	1	
Zinc	=	439	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	<	1.34	
Copper	=	144	
Lead	=	18	
Mercury	<	0.4	
Nickel	=	24.5	
Selenium	<	0.3	
Zinc	=	285	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	34000	
	1		

Compliance Monitoring Event No. 5

Compliance	Monitori
05/01/2020	

toring Period Start Date:

Compliance Monitoring Period End Date: 05/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	2.18	
Copper	=	280	
Lead	=	21	
Mercury	<	1	
Molybdenum	=	15	
Nickel	=	27	
Selenium	=	12	
Zinc	=	610	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	4	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	56.76	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.8	
Cadmium	=	3.03	
Copper	=	194	
Lead	=	16.6	
Mercury	<	0.42	
Nickel	=	22.7	
Selenium	<	6.1	
Zinc	=	479	

		EPA Biosolids	
Report the average concentration (mg applied to land during the compliance	0. 1	sis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the for this SSUID.	sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	34000	
Compliance Monitoring Event No. 6			ompliance Monitoring Period End Date: 6/30/2020
event? [For example, this will be the ca period.] □ YES ☞ NO	ise if you only col	at are equivalent to the monthly average pollutant cor llected and analyzed one sample of sewage sludge or	-
event? [For example, this will be the caperiod.] YES YNO Maximum Concentration Data for All S This section summarizes the maximum period for this SSUID. In accordance w regulations prohibit land application of sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx?nu ceiling concentration limits in Table 1 of noncompliance events. All pollutant m	ewage Sludge or I n pollutant concent with 40 CFR 503.11 bulk sewage sludg is in the sewage sludg ode=pt40.32.503&r of 40 CFR 503.13 (onitoring data shou	llected and analyzed one sample of sewage sludge or	to land during the compliance monitoring 3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
event? [For example, this will be the caperiod.] YES YNO Maximum Concentration Data for All S This section summarizes the maximum period for this SSUID. In accordance w regulations prohibit land application of sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx?nu ceiling concentration limits in Table 1 of noncompliance events. All pollutant m	ewage Sludge or I n pollutant concent with 40 CFR 503.11 bulk sewage sludg is in the sewage sludg ode=pt40.32.503&r of 40 CFR 503.13 (onitoring data shou	Biosolids Applied to Land trations in the biosolids or sewage sludge that was applied 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 ge or sewage sludge sold or gave away sewage sludge in udge exceed a land application ceiling pollutant limit (Tabl rgn=div5#se40.32.503_113)). EPA will compare the polluta http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg uld be reported in milligrams per kilogram (mg/kg), dry we	d to land during the compliance monitoring 3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
event? [For example, this will be the caperiod.] YES YNO Maximum Concentration Data for All So This section summarizes the maximum period for this SSUID. In accordance v regulations prohibit land application of sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx?nc ceiling concentration limits in Table 1 of noncompliance events. All pollutant m Please only select a "No Data Indicato Sewage Sludge or Biosolids	ewage Sludge or I m pollutant concent with 40 CFR 503.13 bulk sewage sludg ns in the sewage sludg ode=pt40.32.503&r of 40 CFR 503.13 (onitoring data shou or Code" if you are Value	Biosolids Applied to Land trations in the biosolids or sewage sludge that was applied 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 ge or sewage sludge sold or gave away sewage sludge in udge exceed a land application ceiling pollutant limit (Tabl rgn=div5#se40.32.503_113)). EPA will compare the polluta http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg uld be reported in milligrams per kilogram (mg/kg), dry we reporting no data for the sampling period or particular par Parameter Concentration (mg/kg, dry-weight basis	biosolids for this compliance monitoring 3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter.
event? [For example, this will be the caperiod.] YES INO Maximum Concentration Data for All Se This section summarizes the maximur period for this SSUID. In accordance of regulations prohibit land application of sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx?nu ceiling concentration limits in Table 1 of noncompliance events. All pollutant m Please only select a "No Data Indicato Sewage Sludge or Biosolids Parameter	wage Sludge or I n pollutant concent with 40 CFR 503.13 bulk sewage sludge sin the sewage sludge bode=pt40.32.503&r of 40 CFR 503.13 (onitoring data shou or Code" if you are Value Qualifier	Biosolids Applied to Land trations in the biosolids or sewage sludge that was applied 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 ge or sewage sludge sold or gave away sewage sludge in udge exceed a land application ceiling pollutant limit (Tabl rgn=div5#se40.32.503_113)). EPA will compare the polluta http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg uld be reported in milligrams per kilogram (mg/kg), dry we reporting no data for the sampling period or particular par Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	biosolids for this compliance monitoring 3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter.

Lead	=	22	
Mercury	<	1	
Molybdenum	=	13.3	
Nickel	=	27	
Selenium	=	10	
Zinc	=	520	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	21	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.66	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.6	
Cadmium	=	3.47	
Copper	=	254	
Lead	=	19.9	
Mercury	<	0.34	
Nickel	=	26.5	
Selenium	<	5.1	
Zinc	=	507	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	27000	

Compliance Monitoring Event No. 7

Compliance Monitoring Period Start Date: 07/01/2020

Compliance Monitoring Period End Date: 07/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed a should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.3	
Cadmium	=	4.3	
Copper	=	309	
Lead	=	19	
Mercury	<	1	
Molybdenum	=	12.9	
Nickel	=	26	
Selenium	=	10	
Zinc	=	530	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.6	
Cadmium	=	3.44	
Copper	=	270	
Lead	=	17.8	
Mercury	<	0.41	
Nickel	=	25.2	
Selenium	<	5	
Zinc	=	501	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	32000	
Compliance Monitoring Event No. 8	•	liance Monitoring Period Start Date: /2020	Compliance Monitoring Period End Date: 08/31/2020
Do you have analytical results to report f	or this monitoring	period? 🗹 YES 🗆 NO	
		re equivalent to the monthly average pollutant c ted and analyzed one sample of sewage sludge	•
🗆 YES 🗹 NO			
Maximum Concentration Data for All Sew	age Sludge or Bios	solids Applied to Land	
		ons in the biosolids or sewage sludge that was app	o 1 o

period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.3	
Cadmium	=	4.5	
Copper	=	272	
Lead	=	15.5	
Mercury	<	1	
Molybdenum	=	10.7	
Nickel	=	22.6	
Selenium	=	7	
Zinc	=	436	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	50	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	2.4	
Cadmium	=	2.72	
Copper	=	216	
Lead	=	15.3	
Mercury	<	0.38	
Nickel	=	20.8	
Selenium	<	3.4	
Zinc	=	388	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	32000	

Compliance Monitoring Event No. 9

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date:

2/1	7/202	1
-----	-------	---

021	021 EPA	Biosolids
	09/01/2020	09/30/2020
	Do you have analytical results to report for this monitoring period?	
	Are you reporting maximum pollutant concentrations that are equivalent to the mont event? [For example, this will be the case if you only collected and analyzed one san period.]	

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.6	
Cadmium	=	3.2	
Copper	=	283	
Lead	=	20	
Mercury	<	1	
Molybdenum	=	14	
Nickel	=	30	
Selenium	=	11	
Zinc	=	580	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.8	
Cadmium	=	3.03	
Copper	=	262	

EPA Biosolids

Sewage Sludge or Biosolids	Value		ation (mg/kg, dry-weight basis	If No Data, Select One Of The
Parameter	Qualifier	or Pass/Fail)		Following
_ead	=	18.6		
Mercury	<	0.42		
Nickel	=	27		
Selenium	<	5.6		
Zinc	=	530		
Report the average concentration (applied to land during the compliar		,	N plus Nitrate-Nitrite, as N) in the	e sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg, dry-weight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitri	ite) =	29000		
	1.			пп
□YES I NO				
aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx	mum pollutant con ce with 40 CFR 50 n of bulk sewage s titions in the sewage ?node=pt40.32.56 1 of 40 CFR 503. t monitoring data s	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app 3&rgn=div5#se40.32.503_^ 13 (http://www.ecfr.gov/cgi-l should be reported in milligr	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 113)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we	ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordan regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids	mum pollutant con ce with 40 CFR 50 n of bulk sewage s titions in the sewage ?node=pt40.32.56 1 of 40 CFR 503. t monitoring data s	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app 03&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-l should be reported in milligr are reporting no data for the	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 113)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter	num pollutant con ce with 40 CFR 50 n of bulk sewage s titons in the sewage (?node=pt40.32.50 e 1 of 40 CFR 503. th monitoring data s cator Code" if you Value	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app 03&rgn=div5#se40.32.503	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic	num pollutant con ce with 40 CFR 50 n of bulk sewage s itions in the sewage (?node=pt40.32.50 e 1 of 40 CFR 503. it monitoring data s cator Code" if you Value Qualifier	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app J3&rgn=div5#se40.32.503	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordam regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium	mum pollutant con ce with 40 CFR 50 n of bulk sewage s itions in the sewage (?node=pt40.32.50 a 1 of 40 CFR 503. it monitoring data s cator Code" if you Value Qualifier =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app)3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-l should be reported in millign are reporting no data for the Parameter Concentra or Pass/Fail) 6.3	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
Aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordam regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant con ce with 40 CFR 50 n of bulk sewage s titions in the sewage (?node=pt40.32.50 a 1 of 40 CFR 503. tt monitoring data s cator Code" if you Value Qualifier = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app 03&rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-l should be reported in milligr. are reporting no data for the or Parameter Concentration of Pass/Fail) 6.3 4.1	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
Aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordan sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant con ce with 40 CFR 50 n of bulk sewage s itions in the sewage (?node=pt40.32.5(e 1 of 40 CFR 503. it monitoring data s cator Code" if you Value Qualifier = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-l should be reported in milligr are reporting no data for the or Pass/Fail) 6.3 4.1 310	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordam regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Bewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	mum pollutant con ce with 40 CFR 50 n of bulk sewage s itions in the sewage stions in the sewage e1 of 40 CFR 503. at monitoring data s cator Code" if you Value Qualifier = = = = = = = = = = = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solution of the sludge error sewage sludge solution of the sludge exceed a land application of the sludge exceed exceed a land exceed ex	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordam regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	Num pollutant con ce with 40 CFR 50 n of bulk sewage s stions in the sewage stions in the sewage (?node=pt40.32.50 a 1 of 40 CFR 503. thronitoring data s cator Code" if you Value Qualifier = = <	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-l should be reported in millign are reporting no data for the or Pass/Fail) 6.3 4.1 310 28 1	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordan regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	wum pollutant con ce with 40 CFR 50 n of bulk sewage s stions in the sewage stions in the sewage (?node=pt40.32.50 at of 40 CFR 503. at monitoring data s cator Code" if you Value Qualifier = = = = = = = = = = = = = = = = = = =	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solids e sludge exceed a land app. Index state in the biosolids of the sludge or sewage sludge solids e sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed a land app. Index state in the sludge exceed excee	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
Aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Bewage Sludge or Biosolids Parameter Arsenic Cadmium Copper ead Mercury Molybdenum Nickel Belenium	wum pollutant con ce with 40 CFR 50 n of bulk sewage s sitions in the sewage sitions in the sewage ce 1 of 40 CFR 503. at monitoring data s cator Code" if you Value Qualifier =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-th should be reported in millign are reporting no data for the or Pass/Fail) 6.3 4.1 310 28 1 17 29 13	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab I13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc Arthogen And Vector Attraction Reac Report the pathogen densities in th pathogen density for Class A sewa	Walue Qualifier = <t< td=""><td>centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solide solide e sludge exceed a land app. 3& rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-lishould be reported in millignare reporting no data for the or Pass/Fail) are reporting no data for the should be reported in millignare reporting no data for the or Pass/Fail) 6.3 4.1 310 28 1 17 29 13 680</td><td>br sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 113)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par ation (mg/kg, dry-weight basis</td><td>03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.</td></t<>	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solide solide e sludge exceed a land app. 3& rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-lishould be reported in millignare reporting no data for the or Pass/Fail) are reporting no data for the should be reported in millignare reporting no data for the or Pass/Fail) 6.3 4.1 310 28 1 17 29 13 680	br sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 113)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par ation (mg/kg, dry-weight basis	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc athogen And Vector Attraction Record Report the pathogen densities in th	wum pollutant con ce with 40 CFR 50 n of bulk sewage s stions in the sewage stator Code" if you Value Qualifier =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solide solide e sludge exceed a land app. 3& rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-lishould be reported in millignare reporting no data for the or Pass/Fail) are reporting no data for the should be reported in millignare reporting no data for the or Pass/Fail) 6.3 4.1 310 28 1 17 29 13 680	br sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in /lication ceiling pollutant limit (Tab 113)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular par ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis d to land during the reporting year B – Alternative 1 management of 503.32(b)(2)].	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the m=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following

Sewage Sludge or Biosolids Para	meter	Value Qualifier	Value	If No Data, Sele	ect One Of The Following
Salmonella		<	3		
Report the vector attraction reduct monitoring period for this SSUID.	tion data for the bio	solids or sewage sludge the	at was placed on ar	active sewage slu	dge unit during the compliance
Sewage Sludge or Biosolids Para	meter	Value Qualifier	Value	If No Data, Sele	ect One Of The Following
Solids, total volatile percent remova	I	=	63.46		
onthly Average Pollutant Concern This section summarizes the moni monitoring period for this SSUID.	thly average polluta	ant concentrations in the bio	osolids or sewage sl	udge that was app	a 1
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry-	veight basis	If No Data, Select One Of The Following
Arsenic	=	4.2			
Cadmium	=	3.52			
Copper	=	303			
ead	=	23.9			
lercury	<	0.44			
lickel	=	27.5			
elenium	=	11.4			
inc	=	599			
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg,	dry-weight	If No Data, Select One Of The Following
fotal Nitrogen (TKN plus Nitrate-Nitr	rite) =	29000			
	11				
		Compliance Monitoring I <u>11/01/2020</u> itoring period?	Period Start Date: ∕ES □NO	•	liance Monitoring Period End Date: /2020
rent? [For example, this will be th priod.]	eport for this moni ant concentrations le case if you only Il Sewage Sludge	11/01/2020 itoring period?	YES □ NO e monthly average ne sample of sewa and	<u>11/30</u> pollutant concen	/2020 trations for this compliance monitorir solids for this compliance monitoring
b you have analytical results to re re you reporting maximum polluta tent? [For example, this will be the triod.] □ YES I NO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentrat	eport for this moni ant concentrations is case if you only all Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewage (x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s	11/01/2020 itoring period? Y itoring period? Y itoring period? Y itoring period? itoring period? or Biosolids Applied to Li collected and analyzed of or Biosolids Applied to Li centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge app 03&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-li should be reported in milligre	YES □ NO e monthly average ne sample of sewa and or sewage sludge th //cgi-bin/text-idx?nod Id or gave away sev olication ceiling pollu 113)). EPA will com bin/text-idx?node=p ams per kilogram (n	11/30 pollutant concerninge sludge or bios hat was applied to de=pt40.32.503&rg vage sludge in a bio utant limit (Table 1 boare the pollutant of t40.32.503&rgn=di ng/kg), dry weight	trations for this compliance monitorin solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the v5#se40.32.503_113) to identify basis.
e you have analytical results to re e you reporting maximum polluta ent? [For example, this will be the riod.]	eport for this moni ant concentrations is case if you only all Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewage (x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s	11/01/2020 itoring period? Y itoring period? Y itoring period? Y itoring period? itoring period? or Biosolids Applied to Li collected and analyzed of or Biosolids Applied to Li centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge app 03&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-li should be reported in milligre	YES □ NO e monthly average ne sample of sewa and or sewage sludge th //cgi-bin/text-idx?no ld or gave away sev olication ceiling pollu 133)). EPA will com bin/text-idx?node=p rams per kilogram (n e sampling period o	<u>11/30</u> pollutant concerninge sludge or bios hat was applied to id de=pt40.32.503&rg vage sludge in a ba utant limit (Table 1 bare the pollutant of t40.32.503&rgn=di ng/kg), dry weight r particular parame	trations for this compliance monitorin solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the v5#se40.32.503_113) to identify basis.
you have analytical results to re e you reporting maximum polluta ent? [For example, this will be the riod.] □ YES ☑ NO iximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids	eport for this moni ant concentrations is case if you only all Sewage Sludge imum pollutant com- nce with 40 CFR 50 on of bulk sewage s ations in the sewage (x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s icator Code" if you Value	11/01/2020 itoring period? Y itoring period? Y itoring period? Y itoring period? or Biosolids Applied to Li collected and analyzed or or Biosolids Applied to Li centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol ludge or sewage sludge sol ludge or sewage sludge sol ludge or sewage sludge sol ludge or sewage sludge sol sludge sol sludge or sewage sludge sol sludge sol	YES □ NO e monthly average ne sample of sewa and or sewage sludge th //cgi-bin/text-idx?no ld or gave away sev olication ceiling pollu 133)). EPA will com bin/text-idx?node=p rams per kilogram (n e sampling period o	<u>11/30</u> pollutant concerninge sludge or bios hat was applied to id de=pt40.32.503&rg vage sludge in a ba utant limit (Table 1 bare the pollutant of t40.32.503&rgn=di ng/kg), dry weight r particular parame	trations for this compliance monitoring solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 soncentrations in this section against the v5#se40.32.503_113) to identify basis. ter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Copper	=	274	
Lead	=	18	
Mercury	<	1	
Molybdenum	=	11.1	
Nickel	=	23.4	
Selenium	=	10	
Zinc	=	449	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	65.79	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3	
Cadmium	=	3.1	
Copper	=	242	
Lead	=	17.5	
Mercury	<	0.4	
Nickel	=	21.2	
Selenium	=	8.9	
Zinc	=	445	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	33000	

Compliance Monitoring Event No. 12

Compliance Monitoring Period Start Date: 12/01/2020

Compliance Monitoring Period End Date: 12/31/2020

Do you have analytical results to report for this monitoring period?

☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.9	
Cadmium	=	3.3	
Copper	=	312	
Lead	=	21	
Mercury	<	1	
Molybdenum	=	13	
Nickel	=	25	
Selenium	=	10	
Zinc	=	580	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	2	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.6	
Cadmium	=	3.53	
Copper	=	281	
Lead	=	19	
Mercury	<	0.3	
Nickel	=	25	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Selenium	<	4.9	
Zinc	=	524	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	34000	

ID: 003

Amount: 194

Management Practice Detail: Distribution and Marketing - Compost

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Preparer

NPDES ID of handler:

Facility Information:Synagro - AZ Soils5615 S. 91st AvenueTolleson, AZ 85353

Pathogen Class: Class A EQ

Sewage Sludge or Biosolids Pathogen Reduction Options:

Class A-Alternative 5: PFRP 1: Composting

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- Option 1 Volatile Solids Reduction
- Option 5 Aerobic Processing (Thermophilic Aerobic Digestion/Composting)

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

Contact Information:

623-936-6328 Cgeyer@synagro.com

Geyer

Area Director of Composting

Craig

Monitoring Data

INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B).

Compliance Monitoring Periods

INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance				
monitoring periods reported will correspond to t	ne required frequency of monitoring (monthly, quarterly, se	mi-annually, or annually). For example, if monthly		
monitoring is required, you should report 12 cor	npliance monitoring periods. The required frequency is def	termined by the number of metric tons (dry weight		
basis) of sewage sludge or biosolids land applie	basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx?			
, , , , , , , , , , , , , , , , , , , ,				
node=pt40.32.503&rgn=div5#se40.32.503 116	0.			
	·			
Compliance Monitoring Event No. 1	Compliance Monitoring Period Start Date:	Compliance Monitoring Period End Date:		
	01/01/2020	01/31/2020		
	01/01/2020	01/31/2020		

Do you have analytical results to report for this monitoring period?

https://cdxnodengn.epa.gov/net-biosolids/action				05/00
ntine://caynodenan ena aov//net-nioeolide/action	/saci irad/homa#1/tacilitias/taciliti///id	= ub //program@onort /tormid= 30	h//112/details/\/iew/_prodramReport	35/83
nups.//cuxinouerign.epa.gov/net-biosonus/action	$3660160/10116\pi$;/10011163/1001111		01 + 12/uetalis/view-programmeport	00/00

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.2	
Cadmium	=	1.9	
Copper	=	440	
Lead	=	15	
Mercury	=	1.4	
Molybdenum	=	16	
Nickel	=	24	
Selenium	=	7	
Zinc	=	880	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	25	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.2	
Cadmium	=	1.9	
Copper	=	440	
Lead	=	15	
Mercury	=	1.4	
Nickel	=	24	

EPA Biosolids

	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Selenium	=	7	
Zinc	=	880	
Report the average concentration applied to land during the complia		t basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the se iod for this SSUID.	ewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Fotal Nitrogen (TKN plus Nitrate-Nitr	ite) =	34401	
ompliance Monitoring Event No. 2	2		npliance Monitoring Period End Date:
		02/01/2020 02/2	29/2020
you have analytical results to re	port for this mon	itoring period? If YES INO	
,			
		s that are equivalent to the monthly average pollutant conce collected and analyzed one sample of sewage sludge or bi	
aximum Concentration Data for A	II Sewage Sludge	or Biosolids Applied to Land	
This section summarizes the maxi	mum pollutant con	centrations in the biosolids or sewage sludge that was applied to	o land during the compliance monitoring
period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan	ace with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. ht monitoring data s	centrations in the biosolids or sewage sludge that was applied to 33.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 33&rgn=div5#se40.32.503_113)). EPA will compare the pollutan .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weigh are reporting no data for the sampling period or particular paran	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the div5#se40.32.503_113) to identify tt basis.
period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan	ace with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. ht monitoring data s	D3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table D3&rgn=div5#se40.32.503_113)). EPA will compare the pollutan .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weigh	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the div5#se40.32.503_113) to identify tt basis.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids	ace with 40 CFR 50 in of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s cator Code" if you Value	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 03&rgn=div5#se40.32.503_113)). EPA will compare the pollutan .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weigh are reporting no data for the sampling period or particular paran Parameter Concentration (mg/kg, dry-weight basis	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the rdiv5#se40.32.503_113) to identify tt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter	A ce with 40 CFR 50 on of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data cator Code" if you Value Qualifier	 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 33&rgn=div5#se40.32.503_113)). EPA will compare the pollutan 1.3 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular paran Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the rdiv5#se40.32.503_113) to identify tt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	ice with 40 CFR 50 in of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. ht monitoring data s icator Code" if you Value Qualifier =	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a je sludge exceed a land application ceiling pollutant limit (Table J3&grgn=div5#se40.32.503_113)). EPA will compare the pollutan 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weigh are reporting no data for the sampling period or particular paran Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 1.3	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the rdiv5#se40.32.503_113) to identify tt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	ice with 40 CFR 50 in of bulk sewage sations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data size cator Code" if you Value Qualifier = =	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 03&rgn=div5#se40.32.503_113)). EPA will compare the pollutant 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular parant Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 1.3 0.37	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the cdiv5#se40.32.503_113) to identify th basis. neter.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr: (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	Ince with 40 CFR 50 In of bulk sewage stations in the sewage stations of 40 CFR 503. In of 40 CFR 503. In the monitoring data statistic stati	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 03&rgn=div5#se40.32.503_113)). EPA will compare the pollutant 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular parant Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 1.3 82	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the cdiv5#se40.32.503_113) to identify th basis. neter.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	Ince with 40 CFR 50 In of bulk sewage stations in the sewage stations of 40 CFR 503. In of 40 CFR 503. In the nonitoring data statistic stati	33.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table J3&grgn=div5#se40.32.503_113)). EPA will compare the pollutan 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular parant Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 1.3 2.9	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the cdiv5#se40.32.503_113) to identify th basis. neter.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter	Ince with 40 CFR 50 In of bulk sewage sations in the sewage sations in the sewage sations in the sewage sations in the sewage sation should be sationary of the second s	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 03&rgn=div5#se40.32.503_113)). EPA will compare the pollutan 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular parant Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 1.3 0.37 82 2.9 1.1	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the cdiv5#se40.32.503_113) to identify th basis. neter.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	Ince with 40 CFR 50 In of bulk sewage stations in the sewage stations of 40 CFR 503. In of 40 CFR 503. In the sewage stations of 40 CFR 503. In the sewage stating stations of 40 CFR 503.	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 03.8(m) 0.37 82 2.9 1.1 2.8	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the rdiv5#se40.32.503_113) to identify tt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	ice with 40 CFR 50 in of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. int monitoring data s cator Code" if you Value Qualifier = = = = = = = = = = =	33.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table D3&rgn=div5#se40.32.503_113)). EPA will compare the pollutant 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular parant 1.3 1.3 0.37 82 2.9 1.1 2.8 4.8	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the rdiv5#se40.32.503_113) to identify tt basis. neter. If No Data, Select One Of The
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium	Ince with 40 CFR 50 In of bulk sewage sations in the sewage values in the sewage values of the sewage value of the value value of the value value of the value valu	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 03&rgn=div5#se40.32.503_113)). EPA will compare the pollutant 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular parant 1.3 0.37 82 2.9 1.1 2.8 4.8 2.1	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the cdiv5#se40.32.503_113) to identify th basis. neter.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium	ice with 40 CFR 50 in of bulk sewage s ations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503. int monitoring data s cator Code" if you Value Qualifier = = = = = = = = = = = = = = = = = = =	03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& sludge or sewage sludge sold or gave away sewage sludge in a ge sludge exceed a land application ceiling pollutant limit (Table 03&rgn=div5#se40.32.503_113)). EPA will compare the pollutant 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn= should be reported in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular parant 1.3 0.37 82 2.9 1.1 2.8 4.8 2.1	Argn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 t concentrations in this section against the cdiv5#se40.32.503_113) to identify th basis. neter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	85	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.3	
Cadmium	=	0.37	
Copper	=	82	
Lead	=	2.9	
Mercury	=	1.1	
Nickel	=	4.8	
Selenium	=	2.1	
Zinc	=	170	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	42401	

Compliance Monitoring Event No. 3

Compliance Monitoring Period Start Date: 03/01/2020

Compliance Monitoring Period End Date: 03/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.1	
Cadmium	=	1.2	
Copper	=	350	
Lead	=	12	
Mercury	=	1.3	
Molybdenum	=	10	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	18	
Selenium	=	5	
Zinc	=	670	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	160	
Salmonella	<	2	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.1	
Cadmium	=	1.2	
Copper	=	350	
Lead	=	12	
Mercury	=	1.3	
Nickel	=	18	
Selenium	=	5	
Zinc	=	670	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	35914	

Compliance Monitoring Event No. 4

04/01/2020

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date: 04/30/2020

Do you have analytical results to report for this monitoring period? ☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑ NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.4	
Cadmium	=	1.5	
Copper	=	420	
Lead	=	14	
Mercury	=	1.2	
Molybdenum	=	15	
Nickel	=	22	
Selenium	=	6.9	
Zinc	=	830	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	27	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.4	
Cadmium	=	1.5	
Copper	=	420	
Lead	=	14	
Mercury	=	1.2	
Nickel	=	22	
Selenium	=	6.9	
Zinc	=	830	

		EPA Biosolids		
Report the average concentration (mg, applied to land during the compliance		sis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in f for this SSUID.	the sewag	e sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)		No Data, Select One Of The Illowing
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	39215		
Compliance Monitoring Event No. 5		ompliance Monitoring Period Start Date: 5/01/2020	Complia 05/31/20	nce Monitoring Period End Date:
)o you have analytical results to report			03/31/20	
Are you reporting maximum pollutant c	oncentrations th	at are equivalent to the monthly average pollutant o	concentra	tions for this compliance monitoring
vent? [For example, this will be the ca eriod.]	se if you only col	llected and analyzed one sample of sewage sludge	or biosol	ids for this compliance monitoring
□YES I NO				
Aximum Concentration Data for All Se	wage Sludge or	Biosolids Applied to Land		
This section summarizes the maximun period for this SSUID. In accordance w	n pollutant concen vith 40 CFR 503.1	trations in the biosolids or sewage sludge that was app 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 ge or sewage sludge sold or gave away sewage sludge	.503&rgn=	-div5#se40.32.503_113), EPA's
sewage sludge pollutant concentration	s in the sewage sl	udge exceed a land application ceiling pollutant limit (T	Table 1 of 4	40 CFR 503.13
ceiling concentration limits in Table 1 o	f 40 CFR 503.13 (rgn=div5#se40.32.503_113)). EPA will compare the pol http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503	&rgn=div5a	#se40.32.503_113) to identify
	0	uld be reported in milligrams per kilogram (mg/kg), dry	0	
Please only select a "No Data Indicato	r Code" if you are	reporting no data for the sampling period or particular	parameter	
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basi or Pass/Fail)	is	lf No Data, Select One Of The Following
Arsenic	=	1.3		
Cadmium	=	0.32		
Copper	=	79		
Lead	=	2.9		
Mercury	=	1.1		

Pathogon And Vactor Attraction Paduction				
Zinc	=	160		
Selenium	<	2		

2.5

4.6

=

=

Pathogen And Vector Attraction Reduction

Molybdenum Nickel

> Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	32	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	56.76	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.3	
Cadmium	=	0.32	
Copper	=	79	
Lead	=	2.9	
Mercury	=	1.1	
Nickel	=	4.6	
Selenium	<	2	
Zinc	=	160	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	40112	

Compliance Monitoring Event No. 6

Compliance Monitoring Period Start Date: 06/01/2020

Compliance Monitoring Period End Date: 06/30/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed a should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.9	
Cadmium	=	0.48	
Copper	=	130	
Lead	=	4.2	
Mercury	=	1	
Molybdenum	=	6.1	
Nickel	=	7.3	
Selenium	=	2.4	
Zinc	=	270	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	24	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.66	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.9	
Cadmium	=	0.48	
Copper	=	130	
Lead	=	4.2	
Mercury	=	1	
Nickel	=	7.3	
Selenium	=	2.4	
Zinc	=	270	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	38113	
Compliance Monitoring Event No. 7		ompliance Monitoring Period Start Date: 7/01/2020	Compliance Monitoring Period End Date: 07/31/2020
Do you have analytical results to report f	or this monitori	ng period? 🕑 YES 🗆 NO	
		at are equivalent to the monthly average pollutant lected and analyzed one sample of sewage sludge	-
🗆 YES 🕑 NO			
Maximum Concentration Data for All Sev	vage Sludge or I	Biosolids Applied to Land	
period for this SSUID. In accordance wi regulations prohibit land application of b sewage sludge pollutant concentrations	th 40 CFR 503.13 ulk sewage sludg in the sewage sl	trations in the biosolids or sewage sludge that was ap 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 ge or sewage sludge sold or gave away sewage sludg udge exceed a land application ceiling pollutant limit ('gn=div5#se40.32.503 113)). EPA will compare the po	2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more Table 1 of 40 CFR 503.13

noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	9.2	
Cadmium	=	2.9	
Copper	=	490	
Lead	=	17	
Mercury	=	1	
Molybdenum	=	20	
Nickel	=	23	
Selenium	=	10	
Zinc	=	890	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	27	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	9.2	
Cadmium	=	2.9	
Copper	=	490	
Lead	=	17	
Mercury	=	1	
Nickel	=	23	
Selenium	=	10	
Zinc	=	890	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	lf No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	40211	

Compliance Monitoring Event No. 8

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date:

2/1	7/202	1
-----	-------	---

02	1 EPA Biosolids
	08/01/2020 08/31/2020
	Do you have analytical results to report for this monitoring period?
	Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring

□YES INO

period.]

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.1	
Cadmium	=	1.4	
Copper	=	430	
Lead	=	13	
Mercury	=	0.99	
Molybdenum	=	17	
Nickel	=	19	
Selenium	=	8.6	
Zinc	=	790	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	25	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

	Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Γ	Solids, total volatile percent removal	=	50	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.1	
Cadmium	=	1.4	
Copper	=	430	

EPA Biosolids

	14			
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry-weight basis	If No Data, Select One Of The Following
Lead	=	13		
Mercury	=	0.99		
Nickel	=	19		
Selenium	=	= 8.6		
Zinc	=	790		
Report the average concentration (applied to land during the complian			N plus Nitrate-Nitrite, as N) in the	e sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg, dry-weight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrit	e) =	37501		
🗆 YES 🕑 NO				
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx' ceiling concentration limits in Table noncompliance events. All pollutant	num pollutant conc e with 40 CFR 503 of bulk sewage sl ions in the sewage ?node=pt40.32.503 1 of 40 CFR 503.1 : monitoring data si	entrations in the biosolids of 3.13(a) (http://www.ecfr.gov. udge or sewage sludge sol- s sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-b nould be reported in milligra	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the polluf oin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we	ant concentrations in this section against the jn=div5#se40.32.503_113) to identify ight basis.
aximum Concentration Data for All This section summarizes the maxin period for this SSUID. In accordanc regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx' ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids	num pollutant conc e with 40 CFR 503 of bulk sewage sl ions in the sewage ?node=pt40.32.503 1 of 40 CFR 503.1 : monitoring data si	entrations in the biosolids of 3.13(a) (http://www.ecfr.gov. udge or sewage sludge sol 9 sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-thould be reported in milligra re reporting no data for the	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the polluf oin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
aximum Concentration Data for All This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentral (http://www.ecfr.gov/cgi-bin/text-idx' ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter	with 40 CFR 503 of bulk sewage sl ions in the sewage ?node=pt40.32.503 1 of 40 CFR 503.1 : monitoring data sl ator Code" if you a	entrations in the biosolids of 3.13(a) (http://www.ecfr.gov. udge or sewage sludge sol- s sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-thould be reported in milligra re reporting no data for the Parameter Concentra	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxin regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic	hum pollutant conc e with 40 CFR 503 of bulk sewage sl ions in the sewage ?node=pt40.32.503 1 of 40 CFR 503.1 : monitoring data sl ator Code" if you a Value Qualifier	entrations in the biosolids of 13(a) (http://www.ecfr.gov udge or sewage sludge sol sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail)	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordanc regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx' ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium	hum pollutant conc te with 40 CFR 503 of bulk sewage sl tions in the sewage Prode=pt40.32.503 1 of 40 CFR 503.1 monitoring data si ator Code" if you a Value Qualifier =	entrations in the biosolids of 13(a) (http://www.ecfr.gov. udge or sewage sludge sol sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t hould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx' ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium	hum pollutant conc te with 40 CFR 503 of bulk sewage sl tions in the sewage Prode=pt40.32.503 1 of 40 CFR 503.1 monitoring data sl ator Code" if you a Value Qualifier = =	entrations in the biosolids of 3.13(a) (http://www.ecfr.gov. udge or sewage sludge sol a sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-theould be reported in milligration re reporting no data for the Parameter Concentration or Pass/Fail) 7.3 1.4	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	hum pollutant conc the with 40 CFR 503 of bulk sewage slitions in the sewage Phode=pt40.32.503 1 of 40 CFR 503.1 ator Code" if you a Value Qualifier = = =	entrations in the biosolids of 3.13(a) (http://www.ecfr.gov udge or sewage sludge sol a sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-theould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3 1.4 400	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	hum pollutant conc e with 40 CFR 503 of bulk sewage sl ions in the sewage Prode=pt40.32.503 1 of 40 CFR 503.1 monitoring data sl ator Code" if you a Value Qualifier = = = = =	entrations in the biosolids of 8.13(a) (http://www.ecfr.gov/ udge or sewage sludge solid a sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3 1.4 400 11	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordanc regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx' ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	hum pollutant conc te with 40 CFR 503 of bulk sewage slitions in the sewage Prode=pt40.32.503 1 of 40 CFR 503.1 monitoring data si ator Code" if you and Value Qualifier = = = = = =	entrations in the biosolids of 13(a) (http://www.ecfr.gov udge or sewage sludge sol sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-theould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3 1.4 400 11 0.92 16	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordanc regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel	Num pollutant concernent pollutant concernent with 40 CFR 503 io of bulk sewage slitions in the sewage? ionode=pt40.32.503 1 of 40 CFR 503.1 : monitoring data slitor ator Code" if you a Value Qualifier =	entrations in the biosolids of 8.13(a) (http://www.ecfr.gov/ udge or sewage sludge sol 9 sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3 1.4 400 11 0.92 16 18	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.eofr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium	<pre>bum pollutant conc e with 40 CFR 503 of bulk sewage sl ions in the sewage? node=pt40.32.503 1 of 40 CFR 503.1 : monitoring data si ator Code" if you a Value Qualifier = = = = = = = = = = = = = =</pre>	entrations in the biosolids of 13(a) (http://www.ecfr.gov udge or sewage sludge sol sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-theould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3 1.4 400 11 0.92 16	or sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab (13)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc athogen And Vector Attraction Red Report the pathogen densities in th	vum pollutant concernent with 40 CFR 503 io of bulk sewage slitions in the sewage ions in the sewage slitions in the sewage ionde=pt40.32.503 1 of 40 CFR 503.1 ionoritoring data slition ator Code" if you all Value Qualifier =	entrations in the biosolids of 8.13(a) (http://www.ecfr.gov/ udge or sewage sludge sol a sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3 1.4 400 11 0.92 16 18 7.8 810 r biosolids that was applied ids. When using the Class	br sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 113)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular para ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis d to land during the reporting yea B – Alternative 1 management of	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. rameter.
Iaximum Concentration Data for All This section summarizes the maxim period for this SUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx/ ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc arthogen And Vector Attraction Red Report the pathogen densities in th pathogen density for Class A sewage	um pollutant concernent with 40 CFR 503 ions in the sewages ions in the sewage rode=pt40.32.503 1 of 40 CFR 503.1 : monitoring data si ator Code" if you a Value Qualifier = <	entrations in the biosolids of 8.13(a) (http://www.ecfr.gov/ udge or sewage sludge sol a sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 7.3 1.4 400 11 0.92 16 18 7.8 810 r biosolids that was applied ids. When using the Class	br sewage sludge that was applie /cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 113)). EPA will compare the pollut pin/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we e sampling period or particular particular particular ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis basis) at to land during the reporting yea B – Alternative 1 management op 503.32(b)(2)].	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the inn=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following Image: section against the inn=div5#se40.32.503_113) to identify ight basis. rameter.

			EPA Biosolids		
Sewage Sludge or Biosolids Parar	neter	Value Qualifier	Value	If No Data, Sele	ct One Of The Following
Salmonella	<	1			
Report the vector attraction reducti monitoring period for this SSUID.	ion data for the bios	olids or sewage sludge the	at was placed on a	in active sewage slu	dge unit during the compliance
Sewage Sludge or Biosolids Parar	neter	Value Qualifier	Value	If No Data, Sele	ct One Of The Following
Solids, total volatile percent removal		=	62.22		
onthly Average Pollutant Concent This section summarizes the mont monitoring period for this SSUID. A	hly average polluta	nt concentrations in the bio	solids or sewage	sludge that was appl	
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentr or Pass/Fail)	ation (mg/kg, dry	-weight basis	If No Data, Select One Of The Following
Arsenic	=	7.3			
Cadmium	=	1.4			
Copper	=	400			
_ead	=	11			
Mercury	=	0.92			
Nickel	=	18			
Selenium	=	7.8			
Zinc	=	810			
applied to land during the compliar	ice monitoring pend				
Sewage Sludge or Biosolids	Value Qualifier		entration (mg/kg		lf No Data, Select One Of The Following
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conc	entration (mg/kg		
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitri ompliance Monitoring Event No. 1	Value Qualifier ite) =	Parameter Conc basis)			
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitri ompliance Monitoring Event No. 1 o you have analytical results to rep re you reporting maximum polluta <i>r</i> ent? [For example, this will be the	Value Qualifier ite) = 0 port for this monit nt concentrations	Parameter Conc basis) 39901 Compliance Monitoring 10/01/2020 oring period? Ithat are equivalent to the	Period Start Date 'ES □ NO e monthly averag	: Compi 10/31, e pollutant concen	Following iance Monitoring Period End Date: 2020
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitri ompliance Monitoring Event No. 1 o you have analytical results to rep re you reporting maximum polluta	Value Qualifier ite) = 0 port for this monit nt concentrations	Parameter Conc basis) 39901 Compliance Monitoring 10/01/2020 oring period? Ithat are equivalent to the	Period Start Date 'ES □ NO e monthly averag	: Compi 10/31, e pollutant concen	Following liance Monitoring Period End Date: 2020 trations for this compliance monitorin
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitri ompliance Monitoring Event No. 1 o you have analytical results to rep re you reporting maximum polluta vent? [For example, this will be the eriod.] YES INO aximum Concentration Data for AI This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx	Value Qualifier (te) = 0 port for this monit nt concentrations a case if you only of a li Sewage Sludge of mum pollutant conc ce with 40 CFR 503 n of bulk sewage slittons in the sewage (?node=pt40.32.503	Parameter Conc basis) 39901 Compliance Monitoring 10/01/2020 oring period? or Biosolids Applied to L collected and analyzed o or Biosolids Applied to L entrations in the biosolids 8.13(a) (http://www.ecfr.gov udge or sewage sludge so e sludge exceed a land app 3&rgn=div5#se40.32.503_	Period Start Date TES INO e monthly averag ne sample of sev and or sewage sludge r/cgi-bin/text-idx?n id or gave away so blication ceiling po 113)). EPA will cor	: Compi 10/31, e pollutant concent vage sludge or bios that was applied to li ode=pt40.32.503&rg wage sludge in a ba llutant limit (Table 1 of npare the pollutant c	Following liance Monitoring Period End Date: 2020 trations for this compliance monitoring olids for this compliance monitoring in=div5#se40.32.503_113), EPA's ig or other container when one or more of 40 CFR 503.13 oncentrations in this section against the
Sewage Sludge or Biosolids Parameter Fotal Nitrogen (TKN plus Nitrate-Nitri compliance Monitoring Event No. 1 by you have analytical results to rep re you reporting maximum polluta rent? [For example, this will be the riod.] YES INO aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra	Value Qualifier (ualifier) = 0 0 port for this monit nt concentrations a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you on the you on the you on	Parameter Conc basis) 39901 Compliance Monitoring 10/01/2020 oring period? oring period? Ithat are equivalent to the collected and analyzed of that are equivalent to the collected and analyzed of that are equivalent to the collected and analyzed of a sludge or sewage sludge so a sludge or sewage sludge so a sludge exceed a land app 38xrgn=div5#se40.32.503_ 3 (http://www.ecfr.gov/cgi- nould be reported in milligr	Period Start Date 'ES DNO e monthly averag ne sample of sev and or sewage sludge //cgi-bin/text-idx?nd d or gave away so bication ceiling po 113)). EPA will cor bin/text-idx?node= ams per kilogram	: Comp 10/31. e pollutant concentrage sludge or bios that was applied to liode=pt40.32.503&rg wage sludge in a ba lutant limit (Table 1 of npare the pollutant c :pt40.32.503&rgn=dit (mg/kg), dry weight li	Following liance Monitoring Period End Date: 2020 trations for this compliance monitoring olids for this compliance monitoring in=div5#se40.32.503_113), EPA's ig or other container when one or more of 40 CFR 503.13 oncentrations in this section against the v5#se40.32.503_113) to identify pasis.
Sewage Sludge or Biosolids Parameter Fotal Nitrogen (TKN plus Nitrate-Nitri compliance Monitoring Event No. 1 approximation provided the second stress of t	Value Qualifier (ualifier) = 0 0 port for this monit nt concentrations a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you on the you on the you on	Parameter Conc basis) 39901 Compliance Monitoring 10/01/2020 oring period? oring period? Ithat are equivalent to the collected and analyzed of that are equivalent to the collected and analyzed of that are equivalent to the collected and analyzed of a sludge or sewage sludge so a sludge or sewage sludge so a sludge exceed a land app 38xrgn=div5#se40.32.503_ 3 (http://www.ecfr.gov/cgi- nould be reported in milligr	Period Start Date 'ES NO e monthly averag ne sample of sev and or sewage sludge //cgi-bin/text-idx?nd d or gave away se olication ceiling po 113)). EPA will cor bin/text-idx?node= ams per kilogram e sampling period	: Compi 10/31/ e pollutant concern rage sludge or bios wage sludge or bios wage sludge in a ba llutant limit (Table 1 of npare the pollutant c pt40.32.503&rgn=di (mg/kg), dry weight to or particular parameter	Following liance Monitoring Period End Date: 2020 trations for this compliance monitoring olids for this compliance monitoring in=div5#se40.32.503_113), EPA's ig or other container when one or more of 40 CFR 503.13 oncentrations in this section against the v5#se40.32.503_113) to identify pasis.
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitri compliance Monitoring Event No. 1 by you have analytical results to rep re you reporting maximum polluta rent? [For example, this will be the priod.] □ YES ☑ NO aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idy ceiling concentration limits in Table noncompliance events. All pollutant	Value Qualifier ite) = 0 port for this monit nt concentrations e case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a case if you only of a c	Parameter Conc basis) 39901 Compliance Monitoring 10/01/2020 oring period? Ithat are equivalent to the collected and analyzed of br Biosolids Applied to L entrations in the biosolids 0.13(a) (http://www.ecfr.gov/cgi- nould be reported in milligr 13(http://www.ecfr.gov/cgi- nould be reported in milligr re reporting no data for the Parameter Concentr	Period Start Date 'ES NO e monthly averag ne sample of sev and or sewage sludge //cgi-bin/text-idx?nd d or gave away se olication ceiling po 113)). EPA will cor bin/text-idx?node= ams per kilogram e sampling period	: Compi 10/31/ e pollutant concern rage sludge or bios wage sludge or bios wage sludge in a ba llutant limit (Table 1 of npare the pollutant c pt40.32.503&rgn=di (mg/kg), dry weight to or particular parameter	Following iance Monitoring Period End Date: (2020) trations for this compliance monitoring in=div5#se40.32.503_113), EPA's ig or other container when one or more of 40 CFR 503.13 oncentrations in this section against the v5#se40.32.503_113) to identify pasis. ter. If No Data, Select One Of The

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 47/83

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Copper	=	390	
Lead	=	11	
Mercury	=	0.79	
Molybdenum	=	18	
Nickel	=	17	
Selenium	=	8.6	
Zinc	=	800	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	28	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.46	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.4	
Cadmium	=	1.3	
Copper	=	390	
Lead	=	11	
Mercury	=	0.79	
Nickel	=	17	
Selenium	=	8.6	
Zinc	=	800	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	42111	

Compliance Monitoring Event No. 11

Compliance Monitoring Period Start Date: 11/01/2020

Compliance Monitoring Period End Date: 11/30/2020

Do you have analytical results to report for this monitoring period?

☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in the section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.9	
Cadmium	=	1.3	
Copper	=	440	
Lead	=	11	
Mercury	=	0.93	
Molybdenum	=	15	
Nickel	=	19	
Selenium	=	8.6	
Zinc	=	880	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	27	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	65.79	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.9	
Cadmium	=	1.3	
Copper	=	440	
Lead	=	11	
Mercury	=	0.93	
Nickel	=	19	
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
--	---	--	---
Selenium	=	8.6	
Zinc	=	880	
Report the average concentration applied to land during the complia		nt basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the priod for this SSUID.	sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitr	rite) =	38514	
ompliance Monitoring Event No. 1	2		ompliance Monitoring Period End Date: 2/31/2020
you have analytical results to re	port for this mo	nitoring period? SI YES INO	
rent? [For example, this will be th		ns that are equivalent to the monthly average pollutant con y collected and analyzed one sample of sewage sludge or l	
eriod.] □ YES I INO			
LIYES MINO			
aximum Concontration Data for A	II Sowago Sluda	o or Biosolids Applied to Land	
This section summarizes the maxi	imum pollutant co	ncentrations in the biosolids or sewage sludge that was applied	
This section summarizes the maxi period for this SSUID. In accordar	mum pollutant co nce with 40 CFR 5		3&rgn=div5#se40.32.503_113), EPA's
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applications sewage sludge pollutant concentrations	imum pollutant co nce with 40 CFR 5 on of bulk sewage ations in the sewa	ncentrations in the biosolids or sewage sludge that was applied 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sludge or sewage sludge sold or gave away sewage sludge in ge sludge exceed a land application ceiling pollutant limit (Table	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id	imum pollutant co nce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sludge or sewage sludge sold or gave away sewage sludge in 10ge sludge exceed a land application ceiling pollutant limit (Table 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table	imum pollutant co nce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 503	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Tabli 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgr	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar	imum pollutant co ince with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.6 e 1 of 40 CFR 500 nt monitoring data	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Tabli 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn is should be reported in milligrams per kilogram (mg/kg), dry wei	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar	imum pollutant co ince with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.6 e 1 of 40 CFR 500 nt monitoring data	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Tabli 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgr	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar	imum pollutant co ince with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.6 e 1 of 40 CFR 500 nt monitoring data	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Tabli 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn is should be reported in milligrams per kilogram (mg/kg), dry wei	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids	imum pollutant co ince with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.6 e 1 of 40 CFR 500 nt monitoring data	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Tabli 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn is should be reported in milligrams per kilogram (mg/kg), dry wei	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter	mum pollutant co nce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 503 nt monitoring data icator Code" if you Value	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Table 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn i should be reported in milligrams per kilogram (mg/kg), dry wei a are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic	when the second	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in 10ge sludge exceed a land application ceiling pollutant limit (Table 103&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgr 1 should be reported in milligrams per kilogram (mg/kg), dry weil 1 are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	inum pollutant co noce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 500 nt monitoring data icator Code" if you Value Qualifier =	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in 10ge sludge exceed a land application ceiling pollutant limit (Table 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgr 1 should be reported in milligrams per kilogram (mg/kg), dry weil 1 are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	inum pollutant co nce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 503 nt monitoring data icator Code" if you Value Qualifier = =	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Table 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 8.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn a re reported in milligrams per kilogram (mg/kg), dry weight a are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1 1.7	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	with 40 CFR 5 on of bulk sewage ations in the seway x?node=pt40.32.6 e 1 of 40 CFR 500 nt monitoring data icator Code" if you Value Qualifier = = = = = = = = = = = = = = =	ncentrations in the biosolids or sewage sludge that was applied 003.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in ige sludge exceed a land application ceiling pollutant limit (Table 038rgn=div5#se40.32.503_113)). EPA will compare the polluta 8.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgg a re reported in milligrams per kilogram (mg/kg), dry weight a are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1 1.7 460	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	with with 40 CFR 5 on of bulk sewage ations in the seway ations in the seway<	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn are reporting no data for the sampling period or particular para y are reporting no data for the sampling period or particular para 9.1 1.7 460 11	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	inum pollutant co noce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 500 nt monitoring data icator Code" if you Value Qualifier = = = = = = =	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table 503&rgn=div5#se40.32.503_113)). EPA will compare the polluta 8.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn a.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn should be reported in milligrams per kilogram (mg/kg), dry weight a are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1 1.7 460 11 0.92	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	Walue Qualifier = <t< td=""><td>ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table 103.3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table 103.8(mgn=div5#se40.32.503_113)). EPA will compare the polluta 8.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgg a re reported in milligrams per kilogram (mg/kg), dry weight a are reporting no data for the sampling period or particular para or Pass/Fail) 9.1 1.7 460 11 0.92 13</td><td>3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.</td></t<>	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table 103.3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table 103.8(mgn=div5#se40.32.503_113)). EPA will compare the polluta 8.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgg a re reported in milligrams per kilogram (mg/kg), dry weight a are reporting no data for the sampling period or particular para or Pass/Fail) 9.1 1.7 460 11 0.92 13	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar	Walue Qualifier = <t< td=""><td>ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in 1038rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 1.1 9.1 1.7 460 11 0.92 13 19</td><td>3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.</td></t<>	ncentrations in the biosolids or sewage sludge that was applied 103.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in 1038rgn=div5#se40.32.503_113)). EPA will compare the polluta 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 3.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn 1.1 9.1 1.7 460 11 0.92 13 19	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc	Walue Qualifier = <t< td=""><td>ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge exceed a land application ceiling pollutant limit (Table i038rgn=div5#se40.32.503_113)). EPA will compare the polluta sludge exceed in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1 1.7 460 11 0.92 13 19 8.5</td><td>3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.</td></t<>	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge exceed a land application ceiling pollutant limit (Table i038rgn=div5#se40.32.503_113)). EPA will compare the polluta sludge exceed in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1 1.7 460 11 0.92 13 19 8.5	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter.
This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc	Walue Qualifier = <t< td=""><td>ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge exceed a land application ceiling pollutant limit (Table i038rgn=div5#se40.32.503_113)). EPA will compare the polluta sludge exceed in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1 1.7 460 11 0.92 13 19 8.5</td><td>3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter. If No Data, Select One Of The Following</td></t<>	ncentrations in the biosolids or sewage sludge that was applied i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge or sewage sludge sold or gave away sewage sludge in inge sludge exceed a land application ceiling pollutant limit (Table i03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 sludge exceed a land application ceiling pollutant limit (Table i038rgn=div5#se40.32.503_113)). EPA will compare the polluta sludge exceed in milligrams per kilogram (mg/kg), dry weight are reporting no data for the sampling period or particular para Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 9.1 1.7 460 11 0.92 13 19 8.5	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ght basis. ameter. If No Data, Select One Of The Following

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	26	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	9.1	
Cadmium	=	1.7	
Copper	=	460	
Lead	=	11	
Mercury	=	0.92	
Nickel	=	19	
Selenium	=	8.5	
Zinc	=	900	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	43216	

ID: <u>004</u>

Amount: 5498

Management Practice Detail: Distribution and Marketing - Compost

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Preparer

NPDES ID of handler:

Facility Information:Liberty Compost12421 Holloway RoadLost Hills, CA 93249

Pathogen Class: Class A EQ

Sewage Sludge or Biosolids Pathogen Reduction Options:

- Class A-Alternative 5: PFRP 1: Composting
- Sewage Sludge or Biosolids Vector Attraction Reduction Options:
 - Option 1 Volatile Solids Reduction
 - Option 5 Aerobic Processing (Thermophilic Aerobic Digestion/Composting)

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

Contact Information:

McCarthy

patrickmccarthy@mccarthyfarms.com

Patrick

Site Manager

661-797-2914

□YES INO □UNKNOWN

Monitoring Data INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503 18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B). **Compliance Monitoring Periods** INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)). Compliance Monitoring Event No. 1 **Compliance Monitoring Period Start Date: Compliance Monitoring Period End Date:** 01/01/2020 01/31/2020 Do you have analytical results to report for this monitoring period? YES ONO Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.1 □YES INO Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503 113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter. Value If No Data, Select One Of The Sewage Sludge or Biosolids Parameter Concentration (mg/kg, dry-weight basis Qualifier Following Parameter or Pass/Fail) Arsenic = 8.4 Cadmium = 4.4 = 460 Copper Lead = 15 Mercury < 1 Molybdenum = 25 Nickel = 40 Selenium = 18 = 760 Zinc

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
--------------------------------------	-----------------	-------	---

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#l/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 52/83

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	8.4	
Cadmium	=	4.4	
Copper	=	460	
Lead	=	15	
Mercury	<	1	
Nickel	=	40	
Selenium	=	18	
Zinc	=	760	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	8800	

	Compliance Monitor 02/01/2020	ring Period Start Date:	Compliance Monitoring Period End Date: 02/29/2020
Do you have analytical results to report for this monito	oring period?	☑ YES □ NO	

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES I NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	3.3	
Copper	=	380	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	16	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	30	
Selenium	=	9.5	
Zinc	=	640	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	3.3	
Copper	=	380	
Lead	=	14	
Mercury	<	1	
Nickel	=	30	
Selenium	=	9.5	
Zinc	=	640	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	5400	

Compliance Monitoring Event No. 3

03/01/2020

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date: 03/31/2020

Do you have analytical results to report for this monitoring period? ☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑ NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	3.4	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	16	
Nickel	=	32	
Selenium	=	10	
Zinc	=	660	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	3.4	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Nickel	=	32	
Selenium	=	10	
Zinc	=	660	

		EPA Biosolids				
Report the average concentration (mg/ applied to land during the compliance r		s) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in th or this SSUID.	e sewage sludge or biosolids that was			
Sewage Sludge or Biosolids Parameter						If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	4300				
Compliance Monitoring Event No. 4		npliance Monitoring Period Start Date: 01/2020	Compliance Monitoring Period End Date: 04/30/2020			
Do you have analytical results to report	for this monitorin	g period? ☞ YES □ NO				
period.] □ YES I II NO						
Maximum Concentration Data for All Se	wage Sludge or B	iosolids Applied to Land				
period for this SSUID. In accordance w regulations prohibit land application of sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx?no ceiling concentration limits in Table 1 o noncompliance events. All pollutant mo	ith 40 CFR 503.13(bulk sewage sludge s in the sewage slu de=pt40.32.503&rg f 40 CFR 503.13 (h pnitoring data shoul	ations in the biosolids or sewage sludge that was appli (a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5 e or sewage sludge sold or gave away sewage sludge dge exceed a land application ceiling pollutant limit (Ta n=div5#se40.32.503_113)). EPA will compare the poll ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& d be reported in milligrams per kilogram (mg/kg), dry w	503&rgn=div5#se40.32.503_113), EPA's in a bag or other container when one or more ible 1 of 40 CFR 503.13 utant concentrations in this section against the rgn=div5#se40.32.503_113) to identify reight basis.			
Please only select a INO Data Indicato	Code il you are le	eporting no data for the sampling period or particular particular particular particular particular particular p	arameter.			
5 5	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following			
Arsenic	=	6				
Cadmium	_	3.4				

Pathogen And Vector Attraction Reduction

Copper Lead

Mercury

Nickel

Zinc

Selenium

Molybdenum

=

=

<

=

=

=

=

410

14

1

16

32

8.9

640

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following		
Arsenic	=	6			
Cadmium	=	3.4			
Copper	=	410			
Lead	=	14			
Mercury	<	1			
Nickel	=	32			
Selenium	=	8.9			
Zinc	=	640			

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	7100	

Compliance Monitoring Event No. 5

Compliance Monitoring Period Start Date: 05/01/2020

Compliance Monitoring Period End Date: 05/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed a should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	40	
Copper	=	310	
Lead	=	12	
Mercury	<	1	
Molybdenum	=	17	
Nickel	=	26	
Selenium	=	8.3	
Zinc	=	550	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	56.76	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	2.5	
Copper	=	310	
Lead	=	12	
Mercury	<	1	
Nickel	=	26	
Selenium	=	8.3	
Zinc	=	550	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	: If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	9700	
Compliance Monitoring Event No. 6		ompliance Monitoring Period Start Date: 5/01/2020	Compliance Monitoring Period End Date: 06/30/2020
Do you have analytical results to report f	or this monitori	ng period? 🗹 YES 🗆 NO	
		at are equivalent to the monthly average pollutant lected and analyzed one sample of sewage sludge	
□YES ☑ NO			
Maximum Concentration Data for All Sev	vage Sludge or I	Biosolids Applied to Land	
period for this SSUID. In accordance wil regulations prohibit land application of b sewage sludge pollutant concentrations	h 40 CFR 503.13 ulk sewage sludg in the sewage sl	rations in the biosolids or sewage sludge that was ap 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 ge or sewage sludge sold or gave away sewage sludg udge exceed a land application ceiling pollutant limit (rgn=div5#se40.32.503_113)). EPA will compare the po	2.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more Table 1 of 40 CFR 503.13

noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.2	
Cadmium	=	3.3	
Copper	=	43	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	18	
Nickel	=	28	
Selenium	=	8.6	
Zinc	=	670	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.66	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.2	
Cadmium	=	3.3	
Copper	=	430	
Lead	=	14	
Mercury	<	1	
Nickel	=	28	
Selenium	=	8.6	
Zinc	=	670	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	6700	

Compliance Monitoring Event No. 7

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date:

2/1	7/202	1
-----	-------	---

02 ⁻	EPA Biosolids
	07/01/2020 07/31/2020
	Do you have analytical results to report for this monitoring period?
	Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	3.1	
Copper	=	390	
Lead	=	12	
Mercury	<	1	
Molybdenum	=	17	
Nickel	=	27	
Selenium	=	7.1	
Zinc	=	620	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	lf No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	3.1	
Copper	=	390	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentr or Pass/Fail)	ation (mg/kg, dry-weight bas	is	lf No Data, Select One Of The Following
Lead	=	12			
Mercury	<	1			
Nickel	=	= 27			
Selenium =		7.1			
Zinc	=	620			
Report the average concentration (applied to land during the compliar		, , ,	(N plus Nitrate-Nitrite, as N) in	the sewag	ge sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifie		entration (mg/kg, dry-weight		No Data, Select One Of The ollowing
Total Nitrogen (TKN plus Nitrate-Nitri	te) =	7400			
🗆 YES 🗹 NO					
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra	num pollutant co ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat	ncentrations in the biosolids 503.13(a) (http://www.ecfr.gov sludge or sewage sludge so age sludge exceed a land app 503&rgn=div5#se40.32.503_ 3.13 (http://www.ecfr.gov/ggi a should be reported in milligu	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludge lication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry	2.503&rgn= e in a bag Table 1 of Ilutant con &rgn=div5 weight ba	or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids	num pollutant co ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat	ncentrations in the biosolids 503.13(a) (http://www.ecfr.gov sludge or sewage sludge so age sludge exceed a land ap 503&rgn=div5#se40.32.503_ 3.13 (http://www.ecfr.gov/cgi- a should be reported in milligu u are reporting no data for the	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludge lication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if yo	ncentrations in the biosolids 503.13(a) (http://www.ecfr.gov sludge or sewage sludge so age sludge exceed a land ap 503&rgn=div5#se40.32.503_ 3.13 (http://www.ecfr.gov/cgi- a should be reported in milligi u are reporting no data for the Parameter Concentr	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32, 1 of 40 CFR 50 t monitoring dat cator Code" if yo Value Qualifier	Ancentrations in the biosolids 503.13(a) (http://www.ecfr.gov sludge or sewage sludge so age sludge exceed a land app 503&rgn=div5#se40.32.503_ 3.13 (http://www.ecfr.gov/cgi- a should be reported in milligi u are reporting no data for the Parameter Concentr or Pass/Fail)	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordam regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if you Value Qualifier =	An oncentrations in the biosolids 503.13(a) (http://www.ecfr.gov sludge or sewage sludge so age sludge exceed a land app 503&rgn=div5#se40.32.503_ 3.13 (http://www.ecfr.gov/cgi- a should be reported in milligu u are reporting no data for the Parameter Concentr or Pass/Fail) 5.2	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordam regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if yo Value Qualifier = =	Incentrations in the biosolids 503.13(a) (http://www.ecfr.gov sludge or sewage sludge so age sludge exceed a land app 503&rgn=div5#se40.32.503_ 3.13 (http://www.ecfr.gov/cgi- a should be reported in milligit u are reporting no data for the Parameter Concentr or Pass/Fail) 5.2 2.4	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordani- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	Num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if yo Value Qualifier = = =	Incentrations in the biosolids 503.13(a) (http://www.ecfr.gov sludge or sewage sludge so age sludge exceed a land app 503&rgn=div5#se40.32.503_ 3.13 (http://www.ecfr.gov/cgi- a should be reported in milligit u are reporting no data for the Parameter Concentr or Pass/Fail) 5.2 2.4 330	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordam regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if you Value Qualifier = = = = =	Parameter Concentrations 0 Parameter Concentration 5.2 2.4 330 12	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordam- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if you Qualifier = = = = = <	Parameter Concentrations 5.2 2.4 330 12 1	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordan regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	Num pollutant ca are with 40 CFR an of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if yo Value Qualifier = = = = =	Parameter Concentr 0 7 2 2 12 1 13 28	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxir period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if you Value Qualifier = = = = = = = = = = = = =	Parameter Concentrations 0 2 2 330 12 1 13 28 5	or sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludg blication ceiling pollutant limit (113)). EPA will compare the po pin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry e sampling period or particular	2.503&rgn= e in a bag Table 1 of 4 Illutant con &rgn=div5 weight ba parameter	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
aximum Concentration Data for Al This section summarizes the maxin period for this SSUID. In accordan- regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data India Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc athogen And Vector Attraction Reac Report the pathogen densities in th pathogen density for Class A sewa	Num pollutant case with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32, 1 of 40 CFR 50 t monitoring dat cator Code" if you Value Qualifier =	Image: several sector sector several sector s	br sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludge voltation ceiling pollutant limit (113)). EPA will compare the po- poin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry- e sampling period or particular ation (mg/kg, dry-weight bas d to land during the reporting y B – Alternative 1 managemen	2.503&rgn= e in a bag Table 1 of <i>i</i> illutant con &rgn=div5 weight ba parameter is	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis.
Iaximum Concentration Data for Al This section summarizes the maxing period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration limits in Table noncompliance events. All pollutant Please only select a "No Data India Please only select	num pollutant ca ce with 40 CFR n of bulk sewage tions in the sew ?node=pt40.32. 1 of 40 CFR 50 t monitoring dat cator Code" if yo Value Qualifier = = = = = = = = = = = = = = = = = = =	Image: several sector sector several sector s	br sewage sludge that was app //cgi-bin/text-idx?node=pt40.32 d or gave away sewage sludge voltation ceiling pollutant limit (113)). EPA will compare the po- poin/text-idx?node=pt40.32.503 ams per kilogram (mg/kg), dry- e sampling period or particular ation (mg/kg, dry-weight bas ation (mg/kg, dry-weight bas d to land during the reporting y B – Alternative 1 managemen 503.32(b)(2)].	2.503&rgn= e in a bag Table 1 of . illutant corr &rgn=div5 weight ba parameter is is	ediv5#se40.32.503_113), EPA's or other container when one or more 40 CFR 503.13 iccentrations in this section against the #se40.32.503_113) to identify sis. If No Data, Select One Of The Following

		EPA Biosolids				
Sewage Sludge or Biosolids Para	ameter	Va	alue Qualifier	Value	If No Data, Sel	ect One Of The Following
Salmonella		<		3		
Report the vector attraction reduc monitoring period for this SSUID.	tion data for the	biosolids o	r sewage sludge tha	at was placed on	an active sewage slu	idge unit during the compliance
Sewage Sludge or Biosolids Para	meter	Va	alue Qualifier	Value	If No Data, Sel	ect One Of The Following
Solids, total volatile percent remova	ıl	=		50		
onthly Average Pollutant Concen This section summarizes the mon monitoring period for this SSUID. Sewage Sludge or Biosolids	ithly average po	llutant conc nitoring dat	entrations in the bio	solids or sewage d in milligrams pe	sludge that was app r kilogram (mg/kg), c	lied to land during the compliance Iry weight basis. If No Data, Select One Of The
Parameter	Qualifier		Pass/Fail)			Following
Arsenic	=	5.2	2			
Cadmium	=	2.4	1			
Copper	=	33	0			
Lead	=	12				
Mercury	<	1				
Nickel	=	28				
Selenium	=	5				
Zinc	=	51	0			
applied to land during the complia						
Sewage Sludge or Biosolids Parameter	Value Qualifi	er	Parameter Conce basis)	entration (mg/kg	, dry-weight	lf No Data, Select One Of The Following
Sewage Sludge or Biosolids Parameter	Value Qualifi	er	Parameter Conce	entration (mg/kg	, dry-weight	
Sewage Sludge or Biosolids	Value Qualifi	er	Parameter Conce basis)	entration (mg/kg	, dry-weight	
Sewage Sludge or Biosolids Parameter	rite) =		Parameter Conce basis) 6200		e: Comp	
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nit ompliance Monitoring Event No. 9 o you have analytical results to re	value Qualifi rite) = 9 eport for this m ant concentrati	Comp 09/01 onitoring p ons that an	Parameter Conce basis) 6200 liance Monitoring F /2020 period? If Y re equivalent to the	Period Start Date	e: Comp 09/30	Following Diance Monitoring Period End Date: 1/2020
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nit ompliance Monitoring Event No. 9 o you have analytical results to re re you reporting maximum pollut vent? [For example, this will be the eriod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentr	Value Qualifi rrite) = 9 eport for this mant concentration ant concentration ince with 40 CFF on of bulk sewage stimum pollutant ince with 40 CFF ince with 40 CFF	Comp 09/01 onitoring p ons that an nly collect lge or Bios concentration to 503.13(a) pe sludge o vage sludge o vage sludge o 2.503&rgn= 03.13 (http	Parameter Conce basis) 6200 liance Monitoring F /2020 period? Y re equivalent to the ed and analyzed of solids Applied to La ons in the biosolids of (http://www.ecfr.gov r sewage sludge sol e exceed a land app div5#se40.32.503_1	Period Start Date Period Start	that was applied to pollutant concer wage sludge or bio that was applied to node=pt40.32.503&r ewage sludge in a b ilutant limit (Table 1 mpare the pollutant =pt40.32.503&rgn=d	Following bliance Monitoring Period End Date: //2020 htrations for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nit ompliance Monitoring Event No. 9 o you have analytical results to re re you reporting maximum pollut rent? [For example, this will be the eriod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicatic sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl	Value Qualifi rite) = 9 eport for this manual concentrations ant concentrations ine case if you concentrations All Sewage Sluce imum pollutant ince with 40 CFF of bulk sewage start concentrations ince with 40 CFF of bulk sewage start concentration int monitoring data	Comp 09/01 onitoring p ons that an nly collect lge or Bios concentratic 503.13(a) je sludge o vage sludge 03.13 (http tta should b	Parameter Conce basis) 6200 liance Monitoring R /2020 period? Y re equivalent to the ed and analyzed or solids Applied to La ons in the biosolids of (http://www.ecfr.gov/ r sewage sludge sol e exceed a land app div5#se40.32.503_1 ://www.ecfr.gov/cgi-t ie reported in milligra	Period Start Date TES NO Period Start Date TES NO Period Start Date Period Start Dat	that was applied to pode=pt40.32.503&r wage sludge or bio sudge=pt40.32.503&r ewage sludge in a b ilutant limit (Table 1 mpare the pollutant =pt40.32.503&rgn=d (mg/kg), dry weight	Following Diance Monitoring Period End Date: 1/2020 Attrations for this compliance monitoring solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis.
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nit ompliance Monitoring Event No. 9 o you have analytical results to re re you reporting maximum pollut vent? [For example, this will be the eriod.] □ YES MO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land application sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All polluta	Value Qualifi rite) = 9 eport for this manual concentrations ant concentrations ine case if you concentrations All Sewage Sluce imum pollutant ince with 40 CFF of bulk sewage start concentrations ince with 40 CFF of bulk sewage start concentration int monitoring data	Comp 09/01 onitoring p ons that an nly collect lge or Bios concentratic 2 503.13(a) je sludge o vage sludge 2.503&rgn= 03.13 (http ita should b ou are repo	Parameter Conce basis) 6200 liance Monitoring R (2020 period? Y re equivalent to the ed and analyzed or solids Applied to La ons in the biosolids of (http://www.ecfr.gov/ r sewage sludge sol e exceed a land app div5#se40.32.503_1 ://www.ecfr.gov/cgi-t ie reported in milligra	Period Start Date TES NO Period Start Date TES NO Period Start Date Period Start Dat	e: Comp 09/30 ge pollutant concer wage sludge or bio that was applied to node=pt40.32.503&r ewage sludge in a b illutant limit (Table 1 mpare the pollutant e =pt40.32.503&rgn=d (mg/kg), dry weight or particular parame	Following Diance Monitoring Period End Date: 1/2020 Attrations for this compliance monitoring solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis.
Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nit ompliance Monitoring Event No. 9 o you have analytical results to re re you reporting maximum pollut vent? [For example, this will be the priod.] □ YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applications sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids	Value Qualifi rite) = 9 eport for this manual concentrations ant concentrations be case if you contract All Sewage Sluce imum pollutant - nee with 40 CFF on of bulk sewage ations in the seed int monitoring data licator Code" if y Value	Comp 09/01 onitoring p ons that an nly collect lge or Bios concentratic 2 503.13(a) je sludge o vage sludge 2.503&rgn= 03.13 (http ita should b ou are repo	Parameter Conce basis) 6200 liance Monitoring F /2020 period? If Y re equivalent to the ed and analyzed of solids Applied to La ons in the biosolids of (http://www.ecfr.gov/ r sewage sludge sol e exceed a land app div5#se40.32.503_1 ://www.ecfr.gov/cgi-t e reported in milligra porting no data for the arameter Concentra Pass/Fail)	Period Start Date TES NO Period Start Date TES NO Period Start Date Period Start Dat	e: Comp 09/30 ge pollutant concer wage sludge or bio that was applied to node=pt40.32.503&r ewage sludge in a b illutant limit (Table 1 mpare the pollutant e =pt40.32.503&rgn=d (mg/kg), dry weight or particular parame	Following Diance Monitoring Period End Date: 1/2020 Attrations for this compliance monitoring solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis. eter. If No Data, Select One Of The

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 62/83

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	21	
Nickel	=	31	
Selenium	=	10	
Zinc	=	650	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.2	
Cadmium	=	3	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Nickel	=	31	
Selenium	=	10	
Zinc	=	650	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	7100	

Compliance Monitoring Event No. 10

Compliance Monitoring Period Start Date: 10/01/2020

Compliance Monitoring Period End Date: 10/31/2020

Do you have analytical results to report for this monitoring period?

☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in the section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.7	
Cadmium	=	2.4	
Copper	=	430	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	20	
Nickel	=	32	
Selenium	=	8.5	
Zinc	=	780	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.46	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	lf No Data, Select One Of The Following
Arsenic	=	6.7	
Cadmium	=	2.4	
Copper	=	430	
Lead	=	14	
Mercury	<	1	
Nickel	=	32	

			EPA Biosolids	
Sewage Sludge or Biosolids Parameter	Value Qualifier		meter Concentration (mg/kg, dry-weight basis ass/Fail)	If No Data, Select One Of The Following
Selenium	=	8.5		
Zinc	=	780		
Report the average concentratio applied to land during the compl		,	Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the s sSUID.	sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier		Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-N	litrite) =	-	7900	
ompliance Monitoring Event No.	. 11	Complia 11/01/20	-	mpliance Monitoring Period End Date: /30/2020
	the case if you only	,	l and analyzed one sample of sewage sludge or b	
eriod.] □ YES ☑ NO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut	All Sewage Sludge eximum pollutant cor ance with 40 CFR 50 tion of bulk sewage trations in the sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 iant monitoring data	e or Biosol ncentrations 03.13(a) (ht sludge or s ge sludge e 03&rgn=div .13 (http://v should be r		&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify ht basis.
eriod.] YES YNO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids	All Sewage Sludge eximum pollutant cor ance with 40 CFR 50 tion of bulk sewage trations in the sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 iant monitoring data	e or Biosol ncentrations 03.13(a) (ht sludge or si ge sludge de 03&rgn=div .13 (http://w should be i a are reporti	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutan www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify ht basis.
eriod.] YES YNO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text-i- ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter	All Sewage Sludge eximum pollutant corr ance with 40 CFR 50 trations in the sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 iant monitoring data idicator Code" if you	e or Biosol ncentrations 03.13(a) (ht sludge or si ge sludge de 03&rgn=div .13 (http://w should be i a are reporti	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.
aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic	All Sewage Sludge eximum pollutant cor ance with 40 CFR 50 tion of bulk sewage st trations in the sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data adicator Code" if you Value Qualifier	e or Biosol ncentrations 03.13(a) (ht sludge or sa ge sludge e 03&rgn=div .13 (http://v should be r are reporti are reporti	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.
Arsenic	All Sewage Sludge iximum pollutant cor ance with 40 CFR 50 tion of bulk sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data idicator Code" if you Value Qualifier =	e or Biosol ncentrations 03.13(a) (ht sludge or sa ge sludge e 03&rgn=div .13 (http://v should be r are reporti are reporti Para or Pa 6.2	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.
Arsenic Cadmium PYES PY NO Aximum Concentration Data for This section summarizes the ma period for this SSUID. In accords regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	All Sewage Sludge iximum pollutant cor ance with 40 CFR 50 trations in the sewage itrations	e or Biosol ncentrations 03.13(a) (ht sludge or se ge sludge or se 03&rgn=div 3.13 (http://v should be n a are reportin or Para or Para 6.2 2.4	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.
eriod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	All Sewage Sludge iximum pollutant corr ance with 40 CFR 50 trations in the sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 cant monitoring data idicator Code" if you Value Qualifier = = =	e or Biosol accentrations 03.13(a) (ht sludge or sa ge sludge e 03&rgn=div .13 (http://v should be r are reporti Para or Pa 6.2 2.4 420	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.
eriod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	All Sewage Sludge iximum pollutant cor ance with 40 CFR 50 ition of bulk sewage st trations in the sewage st trations in the sewage st trations in the sewage st trations in the sewage st trations of 40 CFR 503 iant monitoring data idicator Code" if you Value Qualifier = = = = =	e or Biosol ncentrations 03.13(a) (ht sludge or sa ge sludge e 03&rgn=div 13 (http://v should be r are reporti Para or Pa 6.2 2.4 420 14	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.
eriod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	All Sewage Sludge iximum pollutant cor ance with 40 CFR 50 tion of bulk sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 cant monitoring data idicator Code" if you Value Qualifier = = = = < <	e or Biosol ncentrations 03.13(a) (ht sludge or sa ge sludge er 03&rgn=div 0.13 (http://v should be r a are reporti a are reporti 6.2 2.4 420 14 1	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.
eriod.] □ YES ☑ NO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut	All Sewage Sludge iximum pollutant cor ance with 40 CFR 50 trations in the sewage itrations	e or Biosol ncentrations 03.13(a) (ht sludge or si ge sludge or 03&rgn=div 03&rgn=div 03&rgn=div 03&rgn=div 13 (http://v should be n or Para or Para o	lids Applied to Land s in the biosolids or sewage sludge that was applied ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 ewage sludge sold or gave away sewage sludge in a exceed a land application ceiling pollutant limit (Table v5#se40.32.503_113)). EPA will compare the pollutar www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn reported in milligrams per kilogram (mg/kg), dry weig ing no data for the sampling period or particular para	&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify iht basis. meter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 65/83

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	65.79	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.2	
Cadmium	=	2.4	
Copper	=	420	
Lead	=	14	
Mercury	<	1	
Nickel	=	30	
Selenium	=	8.2	
Zinc	=	640	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	6600	

Compliance Monitoring Event No. 12

Compliance Monitoring Period Start Date: 12/01/2020

Compliance Monitoring Period End Date: 12/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_srgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_srgn=div5#se40.32.503_113)). to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.3	
Cadmium	=	2.1	
Copper	=	330	
Lead	=	2.5	
Mercury	<	1	
Molybdenum	=	12	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	22	
Selenium	=	5.3	
Zinc	=	480	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.3	
Cadmium	=	2.1	
Copper	=	330	
Lead	=	2.5	
Mercury	<	1	
Nickel	=	22	
Selenium	=	5.3	
Zinc	=	480	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	6500	

ID: 005

Amount: 7401

Management Practice Detail: Agricultural Land Application

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Handler or Applier

NPDES ID of handler:

Facility Information: Tule Ranch / Ag-Tech 4324 E. Ashlan Ave. Fresno, CA 93726

Pathogen Class: Class B

Sewage Sludge or Biosolids Pathogen Reduction Options:

Class B-Alternative 2 PSRP 3: Anaerobic Digestion

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- Option 1 Volatile Solids Reduction
- Option 10 Sewage Sludge Timely Incorporation into Land

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

Monitoring Data

INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B).

Compliance Monitoring Periods

INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)).

Compliance Monitoring Event No. 1

Compliance Monitoring Period Start Date: 01/01/2020

Compliance Monitoring Period End Date: 01/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES I NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	9.2	
Cadmium	=	1.8	
Copper	=	550	
Lead	=	14	
Mercury	=	1.2	
Molybdenum	=	16	

EPA Biosolids

Contact Information: Shaen Magan Owner 559-970-9432 kurt@westexp.com

EPA Biosolids

Nickel=38Selenium=12Zinc=820	Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
	Nickel	=	38	
Zinc = 820	Selenium	=	12	
	Zinc	=	820	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	8.75	
Cadmium	J (Below RL but Above MDL)	1.65	
Copper	=	530	
Lead	=	13	
Mercury	=	1.2	
Nickel	=	37	
Selenium	=	12	
Zinc	=	800	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	52000	

Compliance Monitoring Event No. 2

Compliance Monitoring Period Start Date: 02/01/2020

Compliance Monitoring Period End Date: 02/29/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113), EPA's (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113), to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	6.2	
Cadmium	=	2.3	
Copper	=	540	
Lead	=	12	
Mercury	=	0.87	
Molybdenum	=	18	
Nickel	=	42	
Selenium	<	3.8	
Zinc	=	710	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	6.2	
Cadmium	J (Below RL but Above MDL)	2.1	
Copper	=	510	
Lead	=	11.5	
Mercury	=	0.745	
Nickel	=	39	
Selenium	<	3.8	
Zinc	=	680	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	52500	

Compliance Monitoring Event No. 3

Compliance Monitoring Period Start Date: 03/01/2020

Compliance Monitoring Period End Date: 03/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

YES □NO

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.4	
Cadmium	=	1.9	
Copper	=	620	
Lead	=	13	
Mercury	=	0.7	
Molybdenum	=	17	
Nickel	=	40	
Selenium	<	0.99	
Zinc	=	830	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.4	
Cadmium	=	1.85	
Copper	=	600	
Lead	=	12.5	
Mercury	=	0.665	
Nickel	=	36	
Selenium	<	0.99	
Zinc	=	750	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	53000	

Compliance Monitoring Event No. 4

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date:

2/1	7/202	1
-----	-------	---

)21	1 EPA Biosolids
	04/01/2020 04/30/2020
	Do you have analytical results to report for this monitoring period?
	Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring

□YES INO

period.]

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.6	
Cadmium	=	2.1	
Copper	=	560	
Lead	=	14	
Mercury	=	1.8	
Molybdenum	=	19	
Nickel	=	40	
Selenium	<	1.2	
Zinc	=	790	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.6	
Cadmium	=	2	
Copper	=	550	
Lead	=	13.5	
Mercury	=	1.175	
Nickel	=	38.5	
Selenium	<	1.2	
Zinc	=	790	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg,		lf No Data, Select One Of The Following
Fotal Nitrogen (TKN plus Nitrate-Nitri	te) =	59000			
ompliance Monitoring Event No. 5		Compliance Monitoring F 05/01/2020	Period Start Date	: Comp 05/31	liance Monitoring Period End Date: /2020
o you have analytical results to re	port for this monito	oring period? 🗹 Y	ES 🗆 NO		
					trations for this compliance monitorir olids for this compliance monitoring
🗆 YES 🗹 NO					
aximum Concentration Data for Al					
period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration	ce with 40 CFR 503 n of bulk sewage slu tions in the sewage (?node=pt40.32.503 1 of 40 CFR 503.13 t monitoring data sh	.13(a) (http://www.ecfr.gov dge or sewage sludge sol sludge exceed a land app &rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t iould be reported in milligra	/cgi-bin/text-idx?n d or gave away se lication ceiling pol l13)). EPA will cor bin/text-idx?node= ams per kilogram	ode=pt40.32.503&rc ewage sludge in a ba llutant limit (Table 1 d npare the pollutant c pt40.32.503&rgn=di (mg/kg), dry weight l	g or other container when one or more of 40 CFR 503.13 oncentrations in this section against the v5#se40.32.503_113) to identify pasis.
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry	-weight basis	If No Data, Select One Of The Following
Arsenic	<	1.3			
Cadmium	=	1.9			
Copper	=	520			
ead	=	15			
Mercury	=	0.52			
Molybdenum	=	18			
Nickel	=	38			
Selenium	<	0.94			
Zinc	=	840			
athogen And Vector Attraction Red Report the vector attraction reducti monitoring period for this SSUID. Sewage Sludge or Biosolids Parar	on data for the biose	olids or sewage sludge tha	at was placed on a	_	dge unit during the compliance
Solids, total volatile percent removal		=	56.76	· ·	
· · ·					
onthly Average Pollutant Concent This section summarizes the mont		0 0			ied to land during the compliance
monitoring period for this SSUID. A			-		
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry	-weight basis	If No Data, Select One Of The Following
Arsenic	<	1.3			
		1.85			
Cadmium	=	1.00			
Cadmium	=	510			

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, or Pass/Fail)	,	If No Data, Select One Of The Following
Mercury	=	0.51		
Nickel	=	37		
Selenium	<	0.94		
Zinc	=	810		
Report the average concentratio applied to land during the compli		basis) of Total Nitrogen (TKN plus Nitrate iod for this SSUID.	Nitrite, as N) in the se	wage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg basis)	kg, dry-weight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-N	itrite) =	54000		
	report for this mon tant concentration		rage pollutant conce	ntrations for this compliance monitoring
re you reporting maximum pollu tent? [For example, this will be t rriod.] □ YES ☑ NO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concerni (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage s trations in the sewag idx?node=pt40.32.5 ole 1 of 40 CFR 503 ant monitoring data	or Biosolids Applied to Land contractions in the biosolids or sewage sluce 3.13(a) (http://www.ecfr.gov/cgi-bin/text-id iludge or sewage sludge sold or gave awa e sludge exceed a land application ceiling 03&rgn=div5#se40.32.503_113)). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no should be reported in milligrams per kilogr.	ge that was applied to x?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=c am (mg/kg), dry weigh	b land during the compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis.
re you reporting maximum pollu rent? [For example, this will be the priod.] □ YES ☑ NO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concerni (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage s trations in the sewag idx?node=pt40.32.5 ole 1 of 40 CFR 503 ant monitoring data	s that are equivalent to the monthly ave collected and analyzed one sample of or Biosolids Applied to Land centrations in the biosolids or sewage sluc 3.13(a) (http://www.ecfr.gov/cgi-bin/text-id sludge or sewage sludge sold or gave awa le sludge exceed a land application ceiling 03&rgn=div5#se40.32.503_113)). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	b land during the compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis.
e you reporting maximum pollu ent? [For example, this will be t riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Bewage Sludge or Biosolids Parameter	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage s trations in the sewage idx?node=pt40.32.5i ole 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value	s that are equivalent to the monthly ave collected and analyzed one sample of or Biosolids Applied to Land centrations in the biosolids or sewage sluce (3.13(a) (http://www.ecfr.gov/cgi-bin/text-id ludge or sewage sludge sold or gave awa je sludge exceed a land application ceiling 03&rgn=div5#se40.32.503_113)). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no should be reported in milligrams per kilogra are reporting no data for the sampling peri	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interemeter. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be t riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Bewage Sludge or Biosolids Parameter Arsenic	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage st trations in the sewag idx?node=pt40.32.5 ole 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier	or Biosolids Applied to Land contrations in the biosolids or sewage sluce 3.13(a) (http://www.ecfr.gov/cgi-bin/text-id sludge or sewage sludge sold or gave awa ie sludge exceed a land application ceiling 03&rgn=div5#se40.32.503_113)). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no should be reported in milligrams per kilogri are reporting no data for the sampling peri Parameter Concentration (mg/kg, or Pass/Fail)	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interer. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be t riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Bewage Sludge or Biosolids Parameter arsenic Cadmium	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage idx?node=pt40.32.5 ole 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier <	s that are equivalent to the monthly ave collected and analyzed one sample of or Biosolids Applied to Land centrations in the biosolids or sewage sluc (3.13(a) (http://www.ecfr.gov/cgi-bin/text-id ludge or sewage sludge sold or gave awa ie sludge exceed a land application ceiling J&grgn=div5#se40.32.503_113)). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no should be reported in milligrams per kilogri are reporting no data for the sampling per Parameter Concentration (mg/kg, or Pass/Fail) 1.3	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interer. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be t riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concern (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium	All Sewage Sludge iximum pollutant con ance with 40 CFR 50 ion of bulk sewage s trations in the sewage idx?node=pt40.32.57 ole 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier < =	s that are equivalent to the monthly ave collected and analyzed one sample of collected and analyzed one sample of a sample of several	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interer. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be t riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant conceni (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage s trations in the sewage idx?node=pt40.32.5 ole 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier = = =	as that are equivalent to the monthly averable collected and analyzed one sample of or Biosolids Applied to Land centrations in the biosolids or sewage sludg 3.13(a) (http://www.ecfr.gov/cgi-bin/text-id idudge or sewage sludge sold or gave awa te sludge exceed a land application ceiling 03&rgn=div5#se40.32.503_113)). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no should be reported in milligrams per kilogr: are reporting no data for the sampling period Parameter Concentration (mg/kg, or Pass/Fail) 1.3 1.9 530	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interer. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be t riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorde regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Bewage Sludge or Biosolids Parameter Arsenic Cadmium Copper .ead Mercury	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage trations in the sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier < = = = =	s that are equivalent to the monthly averable collected and analyzed one sample of or Biosolids Applied to Land ccentrations in the biosolids or sewage sluce i3.13(a) (http://www.ecfr.gov/cgi-bin/text-id ibudge or sewage sludge sold or gave awa is sludge exceed a land application ceiling j3&rgn=div5#se40.32.503_113)). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no should be reported in milligrams per kilogra are reporting no data for the sampling per or Pass/Fail) 1.3 1.9 530 15	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interemeter. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be t riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concern (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	All Sewage Sludge iximum pollutant con ance with 40 CFR 50 ion of bulk sewage s trations in the sewage idx?node=pt40.32.5 ole 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier < = = = = =	s that are equivalent to the monthly ave collected and analyzed one sample of collected and analyzed one sample of collected and analyzed one sample of contrations in the biosolids or sewage sluce 3.13(a) (http://www.ecfr.gov/cgi-bin/text-id/ludge or sewage slucge sold or gave awa ie sludge exceed a land application ceiling 3&rgn=div5#se40.32.503_113). EPA will 13 (http://www.ecfr.gov/cgi-bin/text-idx?no should be reported in milligrams per kilogr are reporting no data for the sampling per sample of Parameter Concentration (mg/kg, or Pass/Fail) 1.3 1.9 530 15 0.49	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interer. If No Data, Select One Of The
re you reporting maximum pollu rent? [For example, this will be t rriod.] □ YES ☑ NO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concemi (http://www.ecfr.gov/cgi-bin/text-i ceiling concentration limits in Tat noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids	All Sewage Sludge ximum pollutant con ance with 40 CFR 50 ion of bulk sewage s trations in the sewage idx?node=pt40.32.50 ole 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier = = = = = = = =	s that are equivalent to the monthly average collected and analyzed one sample of collected and analyzed one sample of a sample of	ge that was applied to ?node=pt40.32.503& y sewage sludge in a t pollutant limit (Table 1 compare the pollutant de=pt40.32.503&rgn=r am (mg/kg), dry weigh od or particular param	Desolids for this compliance monitoring rgn=div5#se40.32.503_113), EPA's bag or other container when one or more 1 of 40 CFR 503.13 concentrations in this section against the div5#se40.32.503_113) to identify t basis. Interemeter. If No Data, Select One Of The

 Sewage Sludge or Biosolids Parameter
 Value Qualifier
 Value
 If No Data, Select One Of The Following

 Solids, total volatile percent removal
 =
 53.66

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	1.7	
Copper	=	490	
Lead	=	13.5	
Mercury	=	0.475	
Nickel	=	36	
Selenium	<	0.95	
Zinc	=	770	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	50000	

Compliance Monitoring Event No. 7

Compliance Monitoring Period Start Date: 07/01/2020

Compliance Monitoring Period End Date: 07/31/2020

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_trgn=div5#se40.32.503_113)), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_trgn=div5#se40.32.503_113)), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_trgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	1.7	
Copper	=	540	
Lead	=	15	
Mercury	=	0.54	
Molybdenum	=	20	
Nickel	=	37	
Selenium	<	0.95	
Zinc	=	820	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	1.6	
Copper	=	540	
Lead	=	15	
Mercury	=	0.485	
Nickel	=	35	
Selenium	<	0.95	
Zinc	=	790	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	lf No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	54000	

Compliance Monitoring Event No. 8	Compliance Mor 08/01/2020	itoring Peri	od Start Date:	Compliance Monitoring Period End Dat 08/31/2020	e:
Do you have analytical results to report for t	his monitoring period?	🗹 YES			

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.4	
Cadmium	=	1.7	
Copper	=	570	

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Lead	=	13	
Mercury	=	1.1	
Molybdenum	=	21	
Nickel	=	38	
Selenium	<	1	
Zinc	=	830	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	50	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.4	
Cadmium	=	1.55	
Copper	=	470	
Lead	=	13	
Mercury	=	0.985	
Nickel	=	38	
Selenium	<	1	
Zinc	=	810	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following				
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	49000					
Compliance Monitoring Event No. 9	Comp 09/01/		mpliance Monitoring Period End Date: /30/2020				
Do you have analytical results to report f	or this monitoring p	period? 🗹 YES 🗆 NO					
Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]							
□YES YES							
Maximum Concentration Data for All Sew	age Sludge or Bios	olids Applied to Land					

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13)

(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.4	
Cadmium	=	1.6	
Copper	=	670	
Lead	=	3.4	
Mercury	=	0.66	
Molybdenum	=	20	
Nickel	=	35	
Selenium	<	1	
Zinc	=	900	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.4	
Cadmium	=	1.5	
Copper	=	660	
Lead	=	3.3	
Mercury	=	0.565	
Nickel	=	34.5	
Selenium	<	1	
Zinc	=	880	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	60000	

Compliance Monitoring Event No. 10

Compliance Monitoring Period Start Date: 10/01/2020

Compliance Monitoring Period End Date: 10/31/2020

Do you have analytical results to report for this monitoring period?

YES ONO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_(htttp://www

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following	
Arsenic	J (Below RL but Above MDL)	8.9		
Cadmium	=	1.2		
Copper	=	560		
Lead	=	2.9		
Mercury	=	0.78		
Molybdenum	=	18		
Nickel	=	39		
Selenium	=	6.8		
Zinc	=	770		

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.46	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	J (Below RL but Above MDL)	8.8	
Cadmium	=	1.2	
Copper	=	550	
Lead	J (Below RL but Above MDL)	2.2	
Mercury	=	0.6	
Nickel	=	35.5	
Selenium	=	6.25	
Zinc	=	750	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg	, dry-weight	If No Data, Select One Of The Following
Fotal Nitrogen (TKN plus Nitrate-Nitrit	e) =	58500			
ompliance Monitoring Event No. 11		mpliance Monitoring P /01/2020	Period Start Date	e: Comp 11/30	liance Monitoring Period End Date: /2020
o you have analytical results to rep	oort for this monitori	ng period? 🗹 YI	ES 🗆 NO		
					trations for this compliance monitor solids for this compliance monitoring
period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentral	num pollutant concent e with 40 CFR 503.13 of bulk sewage sludg tions in the sewage sl ?node=pt40.32.503&r 1 of 40 CFR 503.13 (t monitoring data shou	rations in the biosolids o 3(a) (http://www.ecfr.gov/ je or sewage sludge solo udge exceed a land appl gn=div5#se40.32.503_1 http://www.ecfr.gov/cgi- bild be reported in milligra	r sewage sludge (cgi-bin/text-idx?r d or gave away se lication ceiling po 13)). EPA will cor in/text-idx?node= ams per kilogram	ode=pt40.32.503&rg ewage sludge in a b llutant limit (Table 1 npare the pollutant o -pt40.32.503&rgn=di (mg/kg), dry weight	ag or other container when one or more of 40 CFR 503.13 concentrations in this section against th v5#se40.32.503_113) to identify basis.
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	tion (mg/kg, dry	-weight basis	If No Data, Select One Of The Following
Arsenic	=	11			
Cadmium	=	1.2			
Copper	=	540			
Lead	=	2.7			
Mercury	=	0.69			
Molybdenum	=	18			
Nickel	=	34			
Selenium	=	13			
Zinc	=	840			
athogen And Vector Attraction Red Report the vector attraction reduction monitoring period for this SSUID. Sewage Sludge or Biosolids Param	on data for the biosoli	ds or sewage sludge tha Value Qualifier	t was placed on a		dge unit during the compliance
Solids, total volatile percent removal		=	65.79		
onthly Average Pollutant Concentr This section summarizes the month monitoring period for this SSUID. A	nly average pollutant o	concentrations in the bios	solids or sewage	sludge that was app	e .
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)			If No Data, Select One Of The Following
		10.5			
	J (Below RL but Above MDL)	10.5			
Arsenic	J (Below RL but	10.5			
Arsenic Cadmium Copper	J (Below RL but Above MDL)				

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Quali	fier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Mercury	=		0.655	
Nickel	=		34	
Selenium	ı =		9.65	
Zinc	=		800	
Report the average concentration applied to land during the complia		- ,	f Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the is SSUID.	e sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifi	ər	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nit	rite) =		57000	
	eport for this m	onitoring p	eriod? 🗹 YES 🗆 NO	
e you reporting maximum pollut ent? [For example, this will be the riod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applications sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All polluta	All Sewage Slud imum pollutant of noce with 40 CFR on of bulk sewage rations in the sew ix?node=pt40.32 le 1 of 40 CFR 5 int monitoring da	ge or Bioso concentratio 503.13(a) (e sludge or vage sludge 2.503&rgn=c 03.13 (http:/ ta should be	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land Ins in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge in e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollut //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg e reported in milligrams per kilogram (mg/kg), dry we	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis.
re you reporting maximum pollut rent? [For example, this will be the priod.] □ YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applications sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All polluta	All Sewage Slud imum pollutant of noce with 40 CFR on of bulk sewage rations in the sew ix?node=pt40.32 le 1 of 40 CFR 5 int monitoring da	ons that and nly collecter concentratio 503.13(a) (e sludge or vage sludge 2.503&rgn=c 03.13 (http:/ ta should be ou are repor	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land ons in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge in exceed a land application ceiling pollutant limit (Tak div5#se40.32.503_113)). EPA will compare the pollut //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis.
e you reporting maximum pollut ent? [For example, this will be the riod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applications sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-ioc ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter	All Sewage Slud imum pollutant of noce with 40 CFR on of bulk sewage rations in the sew tx?node=pt40.32 le 1 of 40 CFR 5 int monitoring da licator Code" if y Value	ons that and nly collecter concentratio 503.13(a) (e sludge or vage sludge 2.503&rgn=c 03.13 (http:/ ta should be ou are repor	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land ans in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge ir exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollut //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.
e you reporting maximum pollut ent? [For example, this will be the riod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter wsenic	All Sewage Slud imum pollutant of nce with 40 CFR on of bulk sewag rations in the sew lax?node=pt40.32 le 1 of 40 CFR 5 int monitoring da licator Code" if y Value Qualifier	ans that are nly collected concentratio 503.13(a) (e sludge or vage sludge 2.503&rgn=c 03.13 (http:/ ta should be ou are report ou are report	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land ons in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge in e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollut //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.
e you reporting maximum pollut ent? [For example, this will be the riod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land application sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All polluta Please only select a "No Data Ind Bewage Sludge or Biosolids Parameter Arsenic	ant concentrati ne case if you o All Sewage Slud imum pollutant of noe with 40 CFR on of bulk sewag ations in the sew ix?node=pt40.32 le 1 of 40 CFR 5 int monitoring da licator Code" if y Value Qualifier =	ons that ard nly collecter concentratio 503.13(a) (re sludge or 03.13 (http:/ ta should be ou are report or l 12	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land Ins in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5f sewage sludge sold or gave away sewage sludge in e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollur //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.
e you reporting maximum pollut ent? [For example, this will be the riod.] YES INO eximum Concentration Data for A This section summarizes the max period for this SSUID. In accordant regulations prohibit land applications sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter wrsenic Cadmium Copper	All Sewage Slud imum pollutant of noce with 40 CFR on of bulk sewage rations in the sev fx?node=pt40.32 licator Code" if y Value Qualifier = =	ons that ard nly collected concentratio 503.13(a) (e sludge or vage sludge 2.503&rgn=c 03.13 (http:// ta should be ou are report or l 12 12	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land ins in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge ir e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollut //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.
e you reporting maximum pollut ent? [For example, this will be the riod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	All Sewage Slud imum pollutant of noce with 40 CFR on of bulk sewage rations in the sew ix?node=pt40.32 le 1 of 40 CFR 5 int monitoring da licator Code" if y Value Qualifier = = =	ins that are nly collected and	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land ons in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge ir e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollut //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.
e you reporting maximum pollut ent? [For example, this will be the riod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land application sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	All Sewage Slud imum pollutant of nee with 40 CFR on of bulk sewag ations in the sew fax?node=pt40.32 le 1 of 40 CFR 5 int monitoring da licator Code" if y Value Qualifier = = = = =	ons that ard nly collecter concentratio 503.13(a) (re sludge or 03.13 (http:// ta should be ou are report ou are report 12 1.6 530 18	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land ons in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge in e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollur //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.
re you reporting maximum pollut tent? [For example, this will be the triod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applications sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	ant concentrati ne case if you o All Sewage Slud imum pollutant once with 40 CFR on of bulk sewag rations in the sev tx?node=pt40.33 le 1 of 40 CFR 5 int monitoring da licator Code" if y Value Qualifier = = = = = =	ons that ard nly collecter concentratio 503.13(a) (e sludge or 2.503&rgn=c 03.13 (http:// 5.503&rgn=c 03.13 (http:// 5.503&rgn=c 0.3.13 (http:// 1.503&rgn=c 0.13 (http:// 12 12 1.6 5.30 18 0.6	e equivalent to the monthly average pollutant co ad and analyzed one sample of sewage sludge or olids Applied to Land ons in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge in e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollur //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.
re you reporting maximum pollut rent? [For example, this will be the rriod.] YES INO aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordar regulations prohibit land applications sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids	All Sewage Slud imum pollutant of noce with 40 CFR on of bulk sewage rations in the sew ix?node=pt40.32 le 1 of 40 CFR 5 int monitoring da licator Code" if y Value Qualifier = = = = = = = =	ins that are nly collected soncentratio 503.13(a) (le sludge or vage sludge con 03.13 (http://ta should be ou are reported ou are reported for a should be ou are reported for a should be ou are reported for a should be out are repo	e equivalent to the monthly average pollutant co ed and analyzed one sample of sewage sludge or olids Applied to Land ons in the biosolids or sewage sludge that was applie (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 sewage sludge sold or gave away sewage sludge ir e exceed a land application ceiling pollutant limit (Tat div5#se40.32.503_113)). EPA will compare the pollut //www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg e reported in milligrams per kilogram (mg/kg), dry we rting no data for the sampling period or particular pa rameter Concentration (mg/kg, dry-weight basis Pass/Fail)	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ole 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. rameter.

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

EPA Biosolids

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	J (Below RL but Above MDL)	11	
Cadmium	=	1.55	
Copper	=	530	
Lead	=	11.3	
Mercury	=	0.62	
Nickel	=	44	
Selenium	=	8.5	
Zinc	=	810	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	54500	

Sludge Management - Surface Disposal

Sludge Management - Incineration

Sludge Management - Other Management Practice

Additional Information

Please enter any additional information that you would like to provide in the comment box below.

OC San is attaching an electronic version of our annual report broken into several smaller sections. Alternatively, the complete file is available at www.ocsd.com/503. Please contact Deirdre Bingman if you have any questions: dbingman@ocsd.com 714.593.7459.

Additional Attachments

Name	Created Date	Size
4-AppxC-PriorPlInts_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:20 PM	900.26 KB
5-AppxD-F-EPA-ADEQ-Historys_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:19 PM	1.97 MB
2b-AppxA_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:21 PM	2.51 MB

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#l/facilities/facility?id=962/programReport?formId=3067412/details/view-programReport 82/83

Name	Created Date	Size
2c-AppxA_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:20 PM	2.10 MB
1-MainReport-2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:21 PM	2.46 MB
2a-AppxA_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:21 PM	1.89 MB
3-AppxB_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:20 PM	138.81 KB

Certification Information

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Signing an electronic document on behalf of another person is subject to criminal, civil, administrative, or other lawful action.

Certified By: Lan Wiborg (LWIBORG@OCSD.COM)

Certified On: 02/17/2021 8:59 AM

Biosolids Annual Report Landing Page / ORANGE COUNTY SD #2

NPDES ID: CAL120604 Facility Status: Active Facility Name: ORANGE COUNTY SD #2 10844 ELLIS AVENUE FOUNTAIN VALLEY, CA 92708-7018

View Annual Report

NPDES FORM 6100-035

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 BIOSOLIDS ANNUAL REPORT Form Approved. OMB No. 2040-0004. Exp. 03/31/2022

EPA's sewage sludge regulations require certain publicly owned treatment works (POTWs) and Class I sewage sludge management facilities to submit to a Sewage Sludge (Biosolids) Annual Report (see 40 CFR 503.18 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118), 503.28 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_118)). Facilities that must submit a Sewage Sludge (Biosolids) Annual Report include POTWs with a design flow rate equal to or greater than one million gallons per day, POTWs that serve 10,000 people or more, Class I Sludge Management Facilities (as defined by 40 CFR 503.9 (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_19)), and facilities otherwise required to file this report (e.g., permit condition, enforcement action, state law). This is the electronic form for Sewage Sludge (Biosolids) Annual Report filers to use if they are located in one of the states, tribes, or territories (https://www.epa.gov/npdes/npdes-state-program-information) where EPA administers the Federal biosolids program.

For the purposes of this form, the term 'sewage sludge (https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_19)' also refers to the material that is commonly referred to as 'biosolids'. EPA does not have a regulatory definition for biosolids but this material is commonly referred to as sewage sludge that is placed on, or applied to the land to use the beneficial properties of the material as a soil amendment, conditioner, or fertilizer. EPA's use of the term 'biosolids' in this form is to confirm that information about beneficially used sewage sludge (a.k.a. biosolids) should be reported on this form.

Public Availability of Information Submitted on and with General Permit Reports

EPA may make all the information submitted through this form (including all attachments) available to the public without further notice to you. Do not use this online form to submit personal information (e.g., non-business cell phone number or non-business email address), confidential business information (CBI), or if you intend to assert a CBI claim on any of the submitted information. Pursuant to 40 CFR 2.203(a), EPA is providing you with notice that all CBI claims must be asserted at the time of submission. EPA cannot accommodate a late CBI claim to cover previously submitted information because efforts to protect the information requested in this form, if persons wish to assert a CBI claim we direct submitters to contact the NPDES eReporting Help Desk (NPDESeReporting@epa.gov (mailto:NPDESereporting@epa.gov)) for further guidance.

Please note that EPA may contact you after you submit this report for more information regarding your sewage sludge management program.

This collection of information is approved by OMB under the Paperwork Reduction Act, 44 U.S.C. 3501 et seq. (OMB Control No. 2040-0004). Responses to this collection of information are mandatory in accordance with EPA regulations (40 CFR 503.18, 503.28, and 503.48). An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number. The public reporting and recordkeeping burden for this collection of information are estimated to average 3 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates and any suggested methods for minimizing respondent burden including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (2821T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Program Information

Please select all of the following that apply to your obligation to submit a Sewage Sludge (Biosolids) Annual Report in compliance with 40 CFR part 503. The facility is:

- a Class I Sludge Management Facility as defined in 40 CFR 503.9
- · a POTW with a design flow rate equal to or greater than one million gallons per day
- a POTW that serves 10,000 people or more

In the reporting period, did you manage your sewage sludge or biosolids using any of the following management practices: land application, surface disposal, or incineration?

🗹 YES 🗆 NO

If your facility is a POTW, please provide the estimated total amount of sewage sludge produced at your facility for the reporting period (in dry metric tons). If your facility is not a POTW, please provide the estimated total amount of biosolids produced at your facility for the reporting period (in dry metric tons). 16607

Reporting Period Start Date: 01/01/2020

Reporting Period End Date: 12/31/2020

☑ YES □ NO

Treatment Processes

Processes to Significantly Reduce Pathogens (PSRP):

Anaerobic Digestion

Processes to Further Reduce Pathogens (PFRP):

Physical Treatment Options:

Preliminary Operations (e.g., sludge grinding, degritting, blending) Thickening (e.g., Gravity and/or Flotation Thickening, Centrifugation, Belt Filter Press, Vacuum Filter, Screw Press)

Other Processes to Manage Sewage Sludge:

Methane or Biogas Capture and Recovery

Analytical Methods

Did you or your facility collect sewage sludge or biosolids samples for laboratory analysis?

Analytical Methods

- EPA Method 6010 Arsenic (ICP-OES)
- EPA Method 6010 Cadmium (ICP-OES)
- EPA Method 6010 Chromium (ICP-OES)
- EPA Method 6010 Copper (ICP-OES)
- EPA Method 6010 Lead (ICP-OES)
- EPA Method 7471 Mercury (CVAA)
- EPA Method 6010 Molybdenum (ICP-OES)
- EPA Method 6010 Nickel (ICP-OES)
- EPA Method 6010 Selenium (ICP-OES)
- EPA Method 6010 Zinc (ICP-OES)
- EPA Method 6010 Beryllium (ICP-OES)
- EPA Method 351.2 Total Kjeldahl Nitrogen
- Standard Method 4500-N Nitrogen
- Standard Method 2540 Total Solids
- Standard Method 2540 Volatile Solids
- EPA Method 9045 pH (> 7% solids)

Other Analytical Methods

Other Nitrogen Analytical Method Other Analytical Methods Text Area:

EPA 300.0

Sludge Management - Land Application

ID: 003

Amount: 1722

Management Practice Detail: Distribution and Marketing - Compost

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Preparer

NPDES ID of handler:

Facility Information: Inland Empire Regional Composting Facility 12645 6th Street Rancho Cucamonga, CA 91739

Pathogen Class: Class A EQ

Contact Information: Jeff Ziegenbein Site Manager 909-993-1981 jziegenbein@ieua.org
Sewage Sludge or Biosolids Pathogen Reduction Options:

Class A-Alternative 5: PFRP 1: Composting

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- Option 1 Volatile Solids Reduction
- Option 5 Aerobic Processing (Thermophilic Aerobic Digestion/Composting)

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

□YES INO □UNKNOWN

Monitoring Data

INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B).

Compliance Monitoring Periods

INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)).

Compliance Monitoring Event No. 1	Compliance Monitoring Period Start Date:	Compliance Monitoring Period End Date:
	01/01/2020	01/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.7	
Cadmium	=	2.6	
Copper	=	220	
Lead	=	13	
Mercury	<	1	
Molybdenum	=	15	
Nickel	=	24	
Selenium	=	15	
Zinc	=	520	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of

EPA Biosolids

the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	49.9	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.7	
Cadmium	=	2.6	
Copper	=	220	
Lead	=	13	
Mercury	<	1	
Nickel	=	24	
Selenium	=	15	
Zinc	=	520	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	32000	

Compliance Monitoring Event No. 2	Compliance Monitorin	ng Perio	d Start Date:	Compliance Monitoring Peri- 02/29/2020	od End Date:
Do you have analytical results to report for this mo	nitoring period?	YES	□ NO		

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exaced a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed a solution ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_13) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4	
Cadmium	=	1.9	
Copper	=	480	
Lead	=	13	
Mercury	<	1	
Molybdenum	=	11	
Nickel	=	18	
Selenium	=	8.8	
Zinc	=	430	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	48.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4	
Cadmium	=	1.9	
Copper	=	480	
Lead	=	13	
Mercury	<	1	
Nickel	=	18	
Selenium	=	8.8	
Zinc	=	430	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	33000	

Compliance Monitoring Event No. 3

Compliance Monitoring Period Start Date: 03/01/2020

Compliance Monitoring Period End Date: 03/31/2020

Do yo	u have analy	tical results to report for this monitoring period?	🗹 YES

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.2	
Cadmium	=	2.7	
Copper	=	150	
Lead	=	9.7	
Mercury	<	1	
Molybdenum	=	10	
Nickel	=	17	
Selenium	=	9.9	
Zinc	=	340	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	9.8	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	44.9	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	lf No Data, Select One Of The Following
Arsenic	=	3.2	
Cadmium	=	2.7	
Copper	=	150	
Lead	=	9.7	

EPA Biosolids

Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Mercury	<	1	
Nickel	=	17	
Selenium	=	9.9	
Zinc	=	340	
Report the average concentration (n applied to land during the complianc		basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in th iod for this SSUID.	e sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite	e) =	32000	
		s that are equivalent to the monthly average pollutant co collected and analyzed one sample of sewage sludge o	
ent? [For example, this will be the briod.] □ YES ☑ NO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant	case if you only Sewage Sludge um pollutant conc e with 40 CFR 50 of bulk sewage s ions in the sewag 'node=pt40.32.50 1 of 40 CFR 503. monitoring data s	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5 ludge or sewage sludge sold or gave away sewage sludge i e sludge exceed a land application ceiling pollutant limit (Ta J3&rgn=div5#se40.32.503_113)). EPA will compare the pollu 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry w	r biosolids for this compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis.
Pent? [For example, this will be the period.] □ YES ☑ NO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx?) ceiling concentration limits in Table 1 noncompliance events. All pollutant	case if you only Sewage Sludge um pollutant conc e with 40 CFR 50 of bulk sewage s ions in the sewag 'node=pt40.32.50 1 of 40 CFR 503. monitoring data s	collected and analyzed one sample of sewage sludge of or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applii 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5 ludge or sewage sludge sold or gave away sewage sludge i e sludge exceed a land application ceiling pollutant limit (Ta 03&rgn=div5#se40.32.503_113)). EPA will compare the pollu 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r	r biosolids for this compliance monitoring ad to land during the compliance monitoring i03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis.
This section summarizes the maximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table - noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter	Case if you only Sewage Sludge um pollutant con- e with 40 CFR 50 of bulk sewage s ions in the sewag 'node=pt40.32.50 1 of 40 CFR 503, monitoring data s ator Code" if you a Value	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5 ludge or sewage sludge sold or gave away sewage sludge i e sludge exceed a land application ceiling pollutant limit (Ta J3&rgn=div5#se40.32.503_113)). EPA will compare the pollu 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry w are reporting no data for the sampling period or particular part Parameter Concentration (mg/kg, dry-weight basis	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
ent? [For example, this will be the riod.] YES INO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic	case if you only Sewage Sludge um pollutant come e with 40 CFR 50 of bulk sewage s ions in the sewage 'node=pt40.32.50 1 of 40 CFR 503. monitoring data s ator Code" if you a Value Qualifier	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applie 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5 ludge or sewage sludge sold or gave away sewage sludge i e sludge exceed a land application ceiling pollutant limit (Ta 03&rgn=div5#se40.32.503_113)). EPA will compare the pollu 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry w are reporting no data for the sampling period or particular	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
ent? [For example, this will be the riod.] YES INO Eximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Bewage Sludge or Biosolids Parameter Arsenic Cadmium	case if you only Sewage Sludge um pollutant come e with 40 CFR 50 of bulk sewage s ions in the sewag Prode=pt40.32.50 1 of 40 CFR 503. monitoring data s ator Code" if you Value Qualifier =	collected and analyzed one sample of sewage sludge of sewage sludge of sewage sludge to Land or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applied to 1,3,13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5,10,23,23,23,23,23,23,23,23,23,23,23,23,23,	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
ent? [For example, this will be the riod.] YES INO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Bewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	case if you only Sewage Sludge um pollutant come e with 40 CFR 50 of bulk sewage node=pt40.32.5C 1 of 40 CFR 503. monitoring data s ator Code" if you Value Qualifier = = =	collected and analyzed one sample of sewage sludge of sewage sludge of sewage sludge to Land centrations in the biosolids or sewage sludge that was applied in the biosolids or sewage sludge that was applied in the biosolids or sewage sludge that was applied in the biosolids or sewage sludge end of gave away sewage sludge is sludge exceed a land application ceiling pollutant limit (Ta 33&rgn=div5#se40.32.503_113)). EPA will compare the pollutal (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rshould be reported in milligrams per kilogram (mg/kg), dry w are reporting no data for the sampling period or particular particular particular particular in the sampling period or particular particula	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
ent? [For example, this will be the riod.] YES INO Aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	case if you only Sewage Sludge um pollutant come um pollutant come e with 40 CFR 50 of bulk sewage s ions in the sewage ionde=pt40.32.50 1 of 40 CFR 503. monitoring data s ator Code" if you Value Qualifier = = = = = = = = = = =	collected and analyzed one sample of sewage sludge of or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.51udge or sewage sludge sold or gave away sewage sludge is e sludge exceed a land application ceiling pollutant limit (Ta J3&rgn=div5#se40.32.503_113)). EPA will compare the pollut 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry w are reporting no data for the sampling period or particular particular particular particular (Ta J3&Z) Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 3.2 2.7 150	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
ent? [For example, this will be the priod.] □ YES Image: NO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper ead Mercury	case if you only Sewage Sludge um pollutant come e with 40 CFR 50 of bulk sewage s ions in the sewag Prode=pt40.32.50 1 of 40 CFR 503. monitoring data s ator Code" if you a Value Qualifier = = = = = = =	collected and analyzed one sample of sewage sludge of sewage sludge of sewage sludge that was applied to Land centrations in the biosolids or sewage sludge that was applied to 1,000 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.51,000 or gave away sewage sludge is eludge exceed a land application ceiling pollutant limit (Ta 03&rgn=div5#se40.32.503_113)). EPA will compare the pollut 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry w are reporting no data for the sampling period or particular particular particular particular particular (Ta 03.2) 3.2 2.7 150 9.7	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
This section summarizes the maxim period J I YES INO Aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table in noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	case if you only Sewage Sludge um pollutant comment e with 40 CFR 50 of bulk sewage sions in the sewage choice=pt40.32.5C 1 of 40 CFR 503. monitoring data size ator Code" if you Value Qualifier =	collected and analyzed one sample of sewage sludge of sewage sludge that was applied to Land centrations in the biosolids or sewage sludge that was applied in the biosolids or sewage sludge that was applied in the biosolids or sewage sludge provide that was applied to grave away sewage sludge is eludge exceed a land application ceiling pollutant limit (Ta D3&rgn=div5#se40.32.503_113)). EPA will compare the pollut 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry ware reporting no data for the sampling period or particular particular particular particular in the sampling period or particular particular particular in the parameter Concentration (mg/kg, dry-weight basis or Pass/Fail) 3.2 2.7 150 9.7 1 1	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
This section summarizes the maxim PES NO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table in oncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Wercury Wolybdenum Vickel	case if you only Sewage Sludge um pollutant come um pollutant come e with 40 CFR 50 of bulk sewage s ions in the sewage ionode=pt40.32.50 1 of 40 CFR 503. monitoring data s ator Code" if you Value Qualifier =	collected and analyzed one sample of sewage sludge of sewage sludge and analyzed one sample of sewage sludge of centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.53.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503.113)). EPA will compare the pollut 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503.8r should be reported in milligrams per kilogram (mg/kg), dry w are reporting no data for the sampling period or particular part or Pass/Fail) 3.2 2.7 150 9.7 1 12	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.
Pent? [For example, this will be the period.] □ YES ☑ NO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids	case if you only Sewage Sludge um pollutant come um pollutant come e with 40 CFR 50 of bulk sewage s ions in the sewage ionode=pt40.32.50 1 of 40 CFR 503. monitoring data s ator Code" if you Value Qualifier =	collected and analyzed one sample of sewage sludge of sewage sludge and analyzed one sample of sewage sludge of centrations in the biosolids or sewage sludge that was applied 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.53.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503.113)). EPA will compare the pollut 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503.8r should be reported in milligrams per kilogram (mg/kg), dry w are reporting no data for the sampling period or particular part or Pass/Fail) 3.2 2.7 150 9.7 1 12	r biosolids for this compliance monitoring ad to land during the compliance monitoring 103&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter. If No Data, Select One Of The
rent? [For example, this will be the priod.] YES INO aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	Sewage Sludge um pollutant come e with 40 CFR 50 of bulk sewage sions in the sewage node=pt40.32.50 1 of 40 CFR 503. monitoring data sator code" if you a Value Qualifier = = = = = = = = = <td< td=""><td>collected and analyzed one sample of sewage sludge of sewage sludge and the biosolids or sewage sludge that was applied to Land centrations in the biosolids or sewage sludge that was applied as 13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.51/2000 or gave away sewage sludge is eludge exceed a land application ceiling pollutant limit (Ta 103&rgn=div5#se40.32.503_113)). EPA will compare the pollut 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry ware reporting no data for the sampling period or particular partin partin particular particular particular particular</td><td>r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.</td></td<>	collected and analyzed one sample of sewage sludge of sewage sludge and the biosolids or sewage sludge that was applied to Land centrations in the biosolids or sewage sludge that was applied as 13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.51/2000 or gave away sewage sludge is eludge exceed a land application ceiling pollutant limit (Ta 103&rgn=div5#se40.32.503_113)). EPA will compare the pollut 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&r should be reported in milligrams per kilogram (mg/kg), dry ware reporting no data for the sampling period or particular partin partin particular particular particular particular	r biosolids for this compliance monitoring ad to land during the compliance monitoring 03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 itant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis. arameter.

Sewage Sludge or Biosolids ParameterValue QualifierValueIf No Data, Select One Of The FollowingFecal Coliform<</td>7.5Salmonella<</td>3

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	50.4	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Farameter	Quaimer	or Fass/Fail)	Following
Arsenic	=	3.7	
Cadmium	=	3.1	
Copper	=	160	
Lead	=	11	
Mercury	<	1	
Nickel	=	18	
Selenium	=	13	
Zinc	=	370	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	33000	

Compliance Monitoring Event No. 5	Compliance Monitor 05/01/2020	ring Period Start Date:	Compliance Monitoring Period End Date: 05/31/2020
Do you have analytical results to report for this mon	itoring period?	YES NO	

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_srgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_srgn=div5#se40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.7	
Cadmium	=	3.1	
Copper	=	160	
Lead	=	11	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Mercury	<	1	
Molybdenum	=	6.8	
Nickel	=	18	
Selenium	=	13	
Zinc	=	370	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	48.2	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.6	
Cadmium	=	2.7	
Copper	=	190	
Lead	=	14	
Mercury	<	1	
Nickel	=	18	
Selenium	=	11	
Zinc	=	480	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Total Nitrogen (TKN plus Nitrate-Nitrite) = 26000 Compliance Monitoring Event No. 6 Compliance Monitoring Period Start Date: Compliance Monitoring Period End Date: 06/01/2020 06/30/2020 06/30/2020	Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
	Total Nitrogen (TKN plus Nitrate-Nitrite)	=	26000	
06/01/2020 06/30/2020	Compliance Monitoring Event No. 6	Compl	iance Monitoring Period Start Date: Co	ompliance Monitoring Period End Date:
Do you have analytical results to report for this monitoring period? 🛛 🗹 YES 🗌 NO	06/01/2020			6/30/2020

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in the section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.6	
Cadmium	=	2.7	
Copper	=	190	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	12	
Nickel	=	18	
Selenium	=	11	
Zinc	=	480	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	55.1	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.7	
Cadmium	=	2.2	
Copper	=	180	
Lead	=	14	
Mercury	<	1	
Nickel	=	21	

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weig or Pass/Fail)	ght basis If No Data, Select One Of The Following
Selenium	=	8.4	
Zinc	=	400	
Report the average concentration applied to land during the complia		t basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, a riod for this SSUID.	as N) in the sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry- basis)	weight If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitr	ite) =	34000	
ompliance Monitoring Event No. 7		Compliance Monitoring Period Start Date: 07/01/2020	Compliance Monitoring Period End Date: 07/31/2020
o you have analytical results to re	port for this mor	itoring period?	
vent? [For example, this will be the eriod.]	e case if you onl		
eriod.] YES YNO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-id; ceiling concentration limits in Table noncompliance events. All pollutant	II Sewage Sludg mum pollutant coi ice with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.6 e 1 of 40 CFR 503 nt monitoring data	e or Biosolids Applied to Land ncentrations in the biosolids or sewage sludge that v 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan	e sludge in a bag or other container when one or more at limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis.
eriod.] YES YNO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-id; ceiling concentration limits in Table noncompliance events. All pollutant	II Sewage Sludg mum pollutant coi ice with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.6 e 1 of 40 CFR 503 nt monitoring data	e or Biosolids Applied to Land ncentrations in the biosolids or sewage sludge that w 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k	pt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more it limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter.
eriod.] YES YNO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids	II Sewage Sludg mum pollutant con ice with 40 CFR 5 n of bulk sewage ations in the sewa x?node=pt40.32.6 e 1 of 40 CFR 503 nt monitoring data cator Code" if you Value	e or Biosolids Applied to Land ncentrations in the biosolids or sewage sludge that w 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or par Parameter Concentration (mg/kg, dry-weig	pt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic	II Sewage Sludg mum pollutant co icce with 40 CFR 5 in of bulk sewage ations in the sewag ations ation ations ation ations ation ations ation ations ation ation ations ation ation ations ation ation ations ation ation ations ation ations ation ations ation ations ation ation ation ation ation ations ation ation ations ation	e or Biosolids Applied to Land meentrations in the biosolids or sewage sludge that v 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or par Parameter Concentration (mg/kg, dry-weig or Pass/Fail)	pt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
eriod.] YES YNO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	II Sewage Sludg mum pollutant coi icce with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.5 a 1 of 40 CFR 503 nt monitoring data cator Code" if you Value Qualifier =	e or Biosolids Applied to Land ncentrations in the biosolids or sewage sludge that v 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or par Parameter Concentration (mg/kg, dry-weig or Pass/Fail) 3.7	pt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
eriod.] YES ONO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	II Sewage Sludg mum pollutant coi ice with 40 CFR 5 in of bulk sewage ations in the sewa x ² Node=pt40.32.5 e 1 of 40 CFR 503 int monitoring data cator Code" if you Value Qualifier = =	e or Biosolids Applied to Land ncentrations in the biosolids or sewage sludge that w 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or para Parameter Concentration (mg/kg, dry-weig or Pass/Fail) 3.7 2.2	spt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	II Sewage Sludg mum pollutant con- icce with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.2 a 1 of 40 CFR 503 the monitoring data icator Code" if you Value Qualifier = = = =	e or Biosolids Applied to Land incentrations in the biosolids or sewage sludge that v 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or par Parameter Concentration (mg/kg, dry-weig or Pass/Fail) 3.7 2.2 180	pt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter	II Sewage Sludg mum pollutant coi icce with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.5 at 1 of 40 CFR 503 int monitoring data cator Code" if you Value Qualifier = = = = = =	e or Biosolids Applied to Land ncentrations in the biosolids or sewage sludge that w 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or pare Parameter Concentration (mg/kg, dry-weigor or Pass/Fail) 3.7 2.2 180 14	spt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	II Sewage Sludg mum pollutant coi ice with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.5 at 1 of 40 CFR 503 int monitoring data cator Code" if you Value Qualifier = = = = = <	e or Biosolids Applied to Land ncentrations in the biosolids or sewage sludge that w 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or para Parameter Concentration (mg/kg, dry-weig or Pass/Fail) 3.7 2.2 180 14 1	spt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	II Sewage Sludg mum pollutant con ice with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.6 ations in the sewa x?node=pt40.32.6 ations in the sewa x?node=pt40.32.6 ations in the sewa x?node=pt40.32.6 ations in the sewa ations in the sewa	P or Biosolids Applied to Land noentrations in the biosolids or sewage sludge that w 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or par or Pass/Fail) 3.7 2.2 180 14 1 1	spt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The
eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id) ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel	II Sewage Sludg mum pollutant coi icce with 40 CFR 5 in of bulk sewage ations in the sewa x?node=pt40.32.5 at 1 of 40 CFR 503 int monitoring data cator Code" if you Value Qualifier = = = = (= (= (= ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ())) ()) ())) ()))) ()) ()))) ()))))	e or Biosolids Applied to Land neentrations in the biosolids or sewage sludge that v 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node= sludge or sewage sludge sold or gave away sewage ge sludge exceed a land application ceiling pollutan 03&rgn=div5#se40.32.503_113)). EPA will compare .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40. should be reported in milligrams per kilogram (mg/k are reporting no data for the sampling period or pare Parameter Concentration (mg/kg, dry-weig or Pass/Fail) 3.7 2.2 180 14 1 1 21	spt40.32.503&rgn=div5#se40.32.503_113), EPA's e sludge in a bag or other container when one or more tt limit (Table 1 of 40 CFR 503.13 e the pollutant concentrations in this section against the .32.503&rgn=div5#se40.32.503_113) to identify kg), dry weight basis. rticular parameter. ght basis If No Data, Select One Of The

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=965/programReport?formId=3067893/details/view-programReport 11/67

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	51.3	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.2	
Cadmium	=	2.3	
Copper	=	180	
Lead	=	10	
Mercury	<	1	
Nickel	=	16	
Selenium	=	8.6	
Zinc	=	400	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	35000	

Compliance Monitoring Event No. 8

Compliance Monitoring Period Start Date: 08/01/2020

Compliance Monitoring Period End Date: 08/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)), to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	3.2	
Cadmium	=	2.3	
Copper	=	180	
Lead	=	10	
Mercury	<	1	
Molybdenum	=	19	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	16	
Selenium	=	8.6	
Zinc	=	400	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	43.9	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6	
Cadmium	=	2.1	
Copper	=	300	
Lead	=	14	
Mercury	<	1	
Nickel	=	27	
Selenium	=	15	
Zinc	=	580	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	35000	
			1

Compliance Monitoring Event No. 9

09/01/2020

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date: 09/30/2020

Do you have analytical results to report for this monitoring period? ☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑ NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6	
Cadmium	=	2.1	
Copper	=	300	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	15	
Nickel	=	27	
Selenium	=	15	
Zinc	=	580	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following		
Arsenic	=	4.7			
Cadmium	=	2.2			
Copper	=	220			
Lead	=	12			
Mercury	<	1			
Nickel	=	22			
Selenium	=	13			
Zinc	=	480			

		EPA Biosolids			
Report the average concentration (mg, applied to land during the compliance		s) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the r this SSUID.	e sewage sludge or biosolids that was		
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	t If No Data, Select One Of The Following		
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	37000			
Compliance Monitoring Event No. 10	10/	01/2020 1	ompliance Monitoring Period End Date: 0/31/2020		
	oncentrations that	t are equivalent to the monthly average pollutant cor ected and analyzed one sample of sewage sludge or			
period for this SSUID. In accordance w regulations prohibit land application of sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx?nc ceiling concentration limits in Table 1 o noncompliance events. All pollutant mo	n pollutant concentra vith 40 CFR 503.13(bulk sewage sludge s in the sewage slu- de=pt40.32.503&rg f 40 CFR 503.13 (h pnitoring data shoul	ations in the biosolids or sewage sludge that was applied (a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.50 or sewage sludge sold or gave away sewage sludge in dge exceed a land application ceiling pollutant limit (Tab n=div5#se40.32.503_113)). EPA will compare the pollut ttp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rg d be reported in milligrams per kilogram (mg/kg), dry we eporting no data for the sampling period or particular par	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.		
Sewage Sludge or Biosolids Parameter		Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following		
Arsenic	=	4.7			
Cadmium	-	2.2			
Copper	=	220			
Lead	=	12			
Mercury	<	1			
Molybdenum	=	17			
Nickel	=	22			
Selenium	=	13			
inc = 480					

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	44.4	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.8	
Cadmium	=	1.8	
Copper	=	330	
Lead	=	11	
Mercury	<	1	
Nickel	=	19	
Selenium	=	12	
Zinc	=	530	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	34000	

Compliance Monitoring Event No. 11

Compliance Monitoring Period Start Date: 11/01/2020

Compliance Monitoring Period End Date: 11/30/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed a should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.8	
Cadmium	=	1.8	
Copper	=	330	
Lead	=	11	
Mercury	<	1	
Molybdenum	=	12	
Nickel	=	19	
Selenium	=	12	
Zinc	=	530	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.9	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4	
Cadmium	=	1.6	
Copper	=	180	
Lead	=	11	
Mercury	<	1	
Nickel	=	16	
Selenium	=	8.5	
Zinc	=	400	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	35000	
Compliance Monitoring Event No. 12		pliance Monitoring Period Start Date: 11/2020	Compliance Monitoring Period End Date: 12/31/2020
Do you have analytical results to report f	or this monitoring	g period? 🗹 YES 🗆 NO	
		are equivalent to the monthly average pollutant of the contract of the contrac	
□YES I NO			
Maximum Concentration Data for All Sew	age Sludge or Bio	osolids Applied to Land	
period for this SSUID. In accordance wit regulations prohibit land application of b sewage sludge pollutant concentrations (http://www.ecfr.gov/cgi-bin/text-idx?nod	h 40 CFR 503.13(a ulk sewage sludge in the sewage slud e=pt40.32.503&rgn	tions in the biosolids or sewage sludge that was app a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 or sewage sludge sold or gave away sewage sludge ge exceed a land application ceiling pollutant limit (1 pediv5#se40.32.503_113)). EPA will compare the po tp://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503	.503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more fable 1 of 40 CFR 503.13 Ilutant concentrations in this section against the

noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4	
Cadmium	=	1.6	
Copper	=	180	
Lead	=	11	
Mercury	<	1	
Molybdenum	=	14	
Nickel	=	16	
Selenium	=	8.5	
Zinc	=	400	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	45.9	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.7	
Cadmium	=	1.8	
Copper	=	190	
Lead	=	10	
Mercury	<	1	
Nickel	=	18	
Selenium	=	11	
Zinc	=	420	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	35000	

ID: 004

Amount: 13137

Management Practice Detail: Agricultural Land Application

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Handler or Applier

NPDES ID of handler:

Facility Information:Tule Ranch / Ag-Tech4324 E. Ashlan Ave.Fresno, AZ 93726

Pathogen Class: Class B

Sewage Sludge or Biosolids Pathogen Reduction Options:

Class B-Alternative 2 PSRP 3: Anaerobic Digestion

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- Option 1 Volatile Solids Reduction
- Option 10 Sewage Sludge Timely Incorporation into Land

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

□YES INO □UNKNOWN

Monitoring Data

INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B).

Compliance Monitoring Periods

INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)).

Compliance Monitoring Event No. 1	Compliance Monitoring Period Start Date: 01/01/2020			
Do you have analytical results to report for this i	nonitoring period?	🗹 YES		

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

Compliance Monitoring Period End Date:

01/31/2020

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

EPA Biosolids

Contact Information: Shaen Magan Owner 559-970-9432 kurt@westexp.com

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	12	
Cadmium	=	2.6	
Copper	=	470	
Lead	=	28	
Mercury	=	0.98	
Molybdenum	=	16	
Nickel	=	36	
Selenium	=	12	
Zinc	=	750	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	11.5	
Cadmium	=	2.55	
Copper	=	450	
Lead	=	23.5	
Mercury	J (Below RL but Above MDL)	0.514	
Nickel	=	35.5	
Selenium	=	11.5	
Zinc	=	740	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	52000	

Compliance Monitoring Event No. 2

Compliance Monitoring Period Start Date: 02/01/2020

Compliance Monitoring Period End Date: 02/29/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

YES □NO

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	5.6	
Cadmium	=	2.4	
Copper	=	460	
Lead	=	17	
Mercury	=	0.95	
Molybdenum	=	17	
Nickel	=	48	
Selenium	<	3.4	
Zinc	=	660	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	5.6	
Cadmium	=	2.2	
Copper	=	410	
Lead	=	15.5	
Mercury	=	0.79	
Nickel	=	39.5	
Selenium	<	3.4	
Zinc	=	610	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	52000	

Compliance Monitoring Event No. 3

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date:

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=965/programReport?formId=3067893/details/view-programReport 21/67

2/1	7/202	1
-----	-------	---

021	1 EPA Biosolids
	03/01/2020 03/31/2020
	Do you have analytical results to report for this monitoring period?
	Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring

□YES INO

period.]

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	3.1	
Copper	=	540	
Lead	=	19	
Mercury	=	0.67	
Molybdenum	=	20	
Nickel	=	46	
Selenium	<	0.91	
Zinc	=	780	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	2.85	
Copper	=	540	
Lead	=	18	
Mercury	=	0.575	
Nickel	=	43	
Selenium	<	0.91	
Zinc	=	750	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg,	dry-weight	If No Data, Select One Of The Following
otal Nitrogen (TKN plus Nitrate-Nitr	ite) =	53000			
ompliance Monitoring Event No. 4		ompliance Monitoring F 04/01/2020	Period Start Date:	-	bliance Monitoring Period End Date: 0/2020
you have analytical results to re	port for this monito	ring period? 🗹 Y	ES 🗆 NO		
					ntrations for this compliance monitorin solids for this compliance monitoring
□YES I NO					
aximum Concentration Data for A	II Sewage Sludge or	Biosolids Applied to La	and		
period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra	ce with 40 CFR 503.1 n of bulk sewage sluc ations in the sewage s node=pt40.32.5038<br a 1 of 40 CFR 503.13 at monitoring data sho	I3(a) (http://www.ecfr.gov/ lge or sewage sludge sold sludge exceed a land app argn=div5#se40.32.503_1 (http://www.ecfr.gov/cgi-b puld be reported in milligra	/cgi-bin/text-idx?nd d or gave away se lication ceiling poll [13]). EPA will com pin/text-idx?node=p ams per kilogram (ode=pt40.32.503&r wage sludge in a b utant limit (Table 1 pare the pollutant ot40.32.503&rgn=d mg/kg), dry weight	ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis.
Gewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry-	weight basis	If No Data, Select One Of The Following
Arsenic	<	1.7			
Cadmium	=	4			
Copper	=	630			
_ead	=	21			
Mercury	=	0.62			
Molybdenum	=	27			
Nickel	=	52			
Selenium	<	1.2			
Zinc	=	960			
thogen And Vector Attraction Rev Report the vector attraction reduct monitoring period for this SSUID.	ion data for the bioso	lids or sewage sludge tha	at was placed on a	-	udge unit during the compliance
Solids, total volatile percent removal			63.64	,	J
onthly Average Pollutant Concent					lied to land during the compliance
This section summarizes the mont monitoring period for this SSUID. A			-		
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry-	weight basis	If No Data, Select One Of The Following
Arsenic	<	1.7			
Cadmium	=	3.35			
Cadmium					
Copper	=	550			

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier		neter Concentration (mg/kg, dry-weight basis ss/Fail)	If No Data, Select One Of The Following
Mercury	=	0.52		
Nickel	=	45.5		
Selenium	<	1.2		
Zinc	=	890		
Report the average concentratic applied to land during the compl		,	otal Nitrogen (TKN plus Nitrate-Nitrite, as N) in the s SSUID.	sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier		arameter Concentration (mg/kg, dry-weight asis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-N	litrite) =	6	3000	
	-			contrations for this compliance monitoring
re you reporting maximum pollu vent? [For example, this will be the ariod.] □ YES ☑ NO aximum Concentration Data for This section summarizes the mat period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage itrations in the sewa- idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data	e or Biosoli ncentrations 03.13(a) (htt sludge or se ge sludge ei 03&rgn=div .13 (http://w should be r	and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a cceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify ht basis.
Yent? [For example, this will be to eriod.] □YES ☑NO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accord, regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage itrations in the sewa- idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data	e or Biosoli ncentrations 03.13(a) (htt sludge or se ge sludge e: .13 (http://w should be r are reportir	ds Applied to Land in the biosolids or sewage sludge that was applied in p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a cceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify ht basis.
e you reporting maximum pollu ent? [For example, this will be triod.] PYES INO aximum Concentration Data for This section summarizes the maperiod for this SSUID. In accord, regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut Please only select a "No Data In Bewage Sludge or Biosolids Parameter	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage itrations in the sewa- idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data ndicator Code" if you	e or Biosoli ncentrations 03.13(a) (htt sludge or se ge sludge e: .13 (http://w should be r are reportir	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify th basis. meter. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be triod.] YES NO aximum Concentration Data for This section summarizes the maperiod for this SSUID. In accord. regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut Please only select a "No Data In Bewage Sludge or Biosolids Parameter	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage trations in the sewa- idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data ndicator Code" if you Value Qualifier	e or Biosoli ncentrations 03.13(a) (htt sludge or se ge sludge e: 03&rgn=div 3.13 (http://w should be r are reportir Parar or Pa	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify yht basis. meter. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be triod.]	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage tidx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data ndicator Code" if you Value Qualifier <	e or Biosoli ncentrations 03.13(a) (htt sludge or se 03&rgn=div .13 (http://w should be r are reportir Parar or Pa 1.3	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify yht basis. meter. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be triod.] PES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accord: regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage trations in the sewar idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data andicator Code" if you Value Qualifier < =	e or Biosoli ncentrations 03.13(a) (htt sludge or se ge sludge et 03&rgn=div ,13 (http://w should be r are reportir Parar or Pa 1.3 2.7	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify yht basis. meter. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be f riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accorda regulations prohibit land applicat sewage sludge pollutant concent (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage trations in the sewa- idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data ndicator Code" if you Value Qualifier = = =	e or Biosoli ncentrations 03.13(a) (htt sludge or se ge sludge e: 03&rgn=div 3.13 (http://w should be r are reportir Parar or Pa 1.3 2.7 470	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify th basis. meter. If No Data, Select One Of The
e you reporting maximum pollu ent? [For example, this will be to riod.] YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accord. regulations prohibit land applical sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut Please only select a "No Data In Bewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data ndicator Code" if you Value Qualifier < = = = =	e or Biosoli ncentrations 03.13(a) (htt sludge or se 03&rgn=div .13 (http://w should be r are reportir Parar or Pa 1.3 2.7 470 22	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify th basis. meter. If No Data, Select One Of The
re you reporting maximum pollu ent? [For example, this will be to rriod.] □ YES ☑ NO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accord: regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage trations in the sewa- idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data ndicator Code" if you Value Qualifier	e or Biosoli ncentrations 03.13(a) (htt sludge or se ge sludge ei; .13 (http://w should be r a are reportir a are reportir 1.3 2.7 470 22 0.6	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify th basis. meter. If No Data, Select One Of The
re you reporting maximum pollu rent? [For example, this will be to priod.] □ YES INO aximum Concentration Data for This section summarizes the ma period for this SSUID. In accord, regulations prohibit land applicat sewage sludge pollutant concen (http://www.ecfr.gov/cgi-bin/text- ceiling concentration limits in Tal noncompliance events. All pollut Please only select a "No Data In Sewage Sludge or Biosolids	All Sewage Sludge aximum pollutant cor ance with 40 CFR 5 tion of bulk sewage ttrations in the sewar idx?node=pt40.32.5 ble 1 of 40 CFR 503 tant monitoring data addicator Code" if you Value Qualifier = = = = = = =	as that are e y collected a or Biosoli incentrations 03.13(a) (htt sludge or se ge sludge e; .13 (http://w should be r are reportir are reportir 1.3 2.7 470 22 0.6 20	equivalent to the monthly average pollutant conc and analyzed one sample of sewage sludge or b ds Applied to Land in the biosolids or sewage sludge that was applied p://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503 wage sludge sold or gave away sewage sludge in a kceed a land application ceiling pollutant limit (Table 5#se40.32.503_113)). EPA will compare the pollutar ww.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn eported in milligrams per kilogram (mg/kg), dry weig ng no data for the sampling period or particular parar meter Concentration (mg/kg, dry-weight basis	to land during the compliance monitoring &rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more a 1 of 40 CFR 503.13 nt concentrations in this section against the =div5#se40.32.503_113) to identify th basis. meter. If No Data, Select One Of The

 Sewage Sludge or Biosolids Parameter
 Value Qualifier
 Value
 If No Data, Select One Of The Following

 Solids, total volatile percent removal
 =
 56.76

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=965/programReport?formId=3067893/details/view-programReport 24/67

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	2.45	
Copper	=	420	
Lead	=	19	
Mercury	=	0.6	
Nickel	=	28.5	
Selenium	<	0.93	
Zinc	=	740	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	52500	

Compliance Monitoring Event No. 6

Compliance Monitoring Period Start Date: 06/01/2020

Compliance Monitoring Period End Date: 06/30/2020

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_trgn=div5#se40.32.503_113)), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_trgn=div5#se40.32.503_113)), to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	2.9	
Copper	=	490	
Lead	=	23	
Mercury	=	0.46	
Molybdenum	=	22	
Nickel	=	36	
Selenium	<	0.92	
Zinc	=	850	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.66	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.3	
Cadmium	=	2.7	
Copper	=	460	
Lead	=	21.5	
Mercury	=	0.405	
Nickel	=	32.5	
Selenium	<	0.92	
Zinc	=	790	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	47500	

Compliance Monitoring Event No. 7	Com
	07/0

Compliance Monitoring Period Start Date: 07/01/2020 Compliance Monitoring Period End Date: 07/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentrations in the sewage sludge exceed a land application ceiling pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_grgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.2	
Cadmium	=	2.4	
Copper	=	540	

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Lead	=	18	
Mercury	=	0.49	
Molybdenum	=	21	
Nickel	=	33	
Selenium	<	0.87	
Zinc	=	770	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.2	
Cadmium	=	2.35	
Copper	=	520	
Lead	=	18	
Mercury	=	0.47	
Nickel	=	31.5	
Selenium	<	0.87	
Zinc	=	770	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	50000	
Compliance Monitoring Event No. 8	Comp 08/01/		npliance Monitoring Period End Date: 31/2020
Do you have analytical results to report fo	or this monitoring p	eriod? 🗹 YES 🗆 NO	
		e equivalent to the monthly average pollutant conc ed and analyzed one sample of sewage sludge or b	
□YES YES NO			
Maximum Concentration Data for All Sew	age Sludge or Bios	olids Applied to Land	

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13)

(http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.2	
Cadmium	=	2.3	
Copper	=	500	
Lead	=	17	
Mercury	=	0.62	
Molybdenum	=	21	
Nickel	=	29	
Selenium	<	0.87	
Zinc	=	740	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	50	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.2	
Cadmium	=	2.25	
Copper	=	490	
Lead	=	17	
Mercury	=	0.515	
Nickel	=	28	
Selenium	<	0.87	
Zinc	=	740	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	43000	

Compliance Monitoring Event No. 9

Compliance Monitoring Period Start Date: 09/01/2020

Compliance Monitoring Period End Date: 09/30/2020

Do you have analytical results to report for this monitoring period?

YES ONO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.2	
Cadmium	=	2.1	
Copper	=	510	
Lead	=	6.7	
Mercury	=	0.74	
Molybdenum	=	21	
Nickel	=	34	
Selenium	<	0.89	
Zinc	=	780	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	<	1.2	
Cadmium	=	2.05	
Copper	=	500	
Lead	=	6.45	
Mercury	=	0.68	
Nickel	=	32.5	
Selenium	<	0.89	
Zinc	=	770	

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight	If No Data, Select One Of The
Parameter	Qualifier	basis)	Following

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg	, dry-weight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	49500			
ompliance Monitoring Event No. 10		Compliance Monitoring I	Period Start Date		liance Monitoring Period End Date:
o you have analytical results to repor	t for this monito	oring period? 🛛 🗹 Y	′ES □NO		
re you reporting maximum pollutant (vent? [For example, this will be the ca eriod.]					
🗆 YES 🗹 NO					
period for this SSUID. In accordance or regulations prohibit land application of sewage sludge pollutant concentration	m pollutant conce with 40 CFR 503. f bulk sewage slu- ns in the sewage ode=pt40.32.503; of 40 CFR 503.13 conitoring data sh	ntrations in the biosolids of 13(a) (http://www.ecfr.gov dge or sewage sludge sol sludge exceed a land app &rgn=div5#se40.32.503 (http://www.ecfr.gov/cgi-l ould be reported in milligr	or sewage sludge //cgi-bin/text-idx?n d or gave away se dication ceiling po 113)). EPA will cor nin/text-idx?node= ams per kilogram	ode=pt40.32.503&r ewage sludge in a b llutant limit (Table 1 npare the pollutant of pt40.32.503&rgn=d (mg/kg), dry weight	ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis.
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry	-weight basis	If No Data, Select One Of The Following
Arsenic	=	14			
Cadmium	=	2.1			
Copper	=	530			
Lead	=	6.2			
Mercury	=	0.53			
Molybdenum	=	20			
Nickel	=	27			
Selenium	=	6.9			
Zinc	=	720			
athogen And Vector Attraction Reduct Report the vector attraction reduction monitoring period for this SSUID. Sewage Sludge or Biosolids Parameter	data for the biosc	blids or sewage sludge the	at was placed on a	-	udge unit during the compliance
Solids, total volatile percent removal		=	63.46		
Ionthly Average Pollutant Concentration This section summarizes the monthly monitoring period for this SSUID. All p	average pollutant pollutant monitorir	t concentrations in the bio ng data should be reported	solids or sewage d in milligrams per	sludge that was app ⁻ kilogram (mg/kg), c	Iry weight basis.
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry	-weight basis	If No Data, Select One Of The Following
Arsenic	=	14			
Cadmium	=	2			
Copper	=	500			
Copper Lead	=	500 6.15			

EPA Biosolids

Parameter	Value Qualifier	or Pass/Fail)	tion (mg/kg, dry-weight basis	If No Data, Select One Of The Following
Nickel	=	26		
Selenium	=	6.85		
Zinc	=	710		
Report the average concentration (applied to land during the compliar		, . .	l plus Nitrate-Nitrite, as N) in the	sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	ntration (mg/kg, dry-weight	If No Data, Select One Of The Following
īotal Nitrogen (TKN plus Nitrate-Nitri	te) =	53500		
mpliance Monitoring Event No. 1	1	Compliance Monitoring P 11/01/2020		ompliance Monitoring Period End Date: 1/30/2020
This section summarizes the maximperiod for this SSUID. In accordance	num pollutant con ce with 40 CFR 50	centrations in the biosolids or 3.13(a) (http://www.ecfr.gov/o	r sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50	d to land during the compliance monitoring 3&rgn=div5#se40.32.503_113), EPA's
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewag ?node=pt40.32.5 1 of 40 CFR 503. t monitoring data	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/d ludge or sewage sludge sold e sludge exceed a land appli)3&rgn=div5#se40.32.503_17 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra	r sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Sewage Sludge or Biosolids	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewag ?node=pt40.32.5 1 of 40 CFR 503. t monitoring data	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli 03&rgn=div5#se40.32.503_1 [*] 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the	r sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indic Gewage Sludge or Biosolids Parameter	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data cator Code" if you Value	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/d ludge or sewage sludge sold e sludge exceed a land appli) 03&rgn=div5#se40.32.503_1* 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice rewage Sludge or Biosolids tarameter	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewage (?node=pt40.32.50 1 of 40 CFR 503, t monitoring data cator Code" if you Value Qualifier	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli J3&rgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail)	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximum period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Bewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewage (?node=pt40.32.50 1 of 40 CFR 503. t monitoring data : cator Code" if you Value Qualifier =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli)3&rgn=div5#se40.32.503_1^1 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data : cator Code" if you Value Qualifier = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/d ludge or sewage sludge sold e sludge exceed a land appli) 03&rgn=div5#se40.32.503_1* 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	num pollutant con ce with 40 CFR 50 in of bulk sewage s tions in the sewage ?node=pt40.32.5(1 of 40 CFR 503. t monitoring data s cator Code" if you Value Qualifier = = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli 38krgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3 520	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration limits in Table noncompliance events. All pollutant Please only select a "No Data India Please only	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data : cator Code" if you Value Qualifier = = = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli j3&rgn=div5#se40.32.503_1^1 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentration or Pass/Fail) 20 2.3 520 5.9	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration sewage sludge pollutant concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Gewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewage (?node=pt40.32.50 1 of 40 CFR 503. t monitoring data : cator Code" if you Value Qualifier = = = = = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli)3&rgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3 520 5.9 0.84	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel	num pollutant con ce with 40 CFR 55 n of bulk sewage s tions in the sewage ?node=pt40.32.5(1 of 40 CFR 503. t monitoring data s cator Code" if you Value Qualifier = = = = = = = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli 38 rgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3 520 5.9 0.84 22	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentration sewage sludge pollutant concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indices Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Arcury Alolybdenum Cickel Selenium Cickel Selenium Cickel Selenium Cickel Cadmium Cickel Cicker C	num pollutant con ze with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data s zetor Code" if you Value Qualifier = = = = = = = = = = = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli J3&rgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3 520 5.9 0.84 22 31	sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc	Num pollutant conce with 40 CFR 50 no of bulk sewage stions in the sewage stions in the sewage stions in the sewage stions in the sewage store code" if you Value Qualifier = <td>centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli 38 rgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3 520 5.9 0.84 22 31 7.7 850</td> <td>r sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis</td> <td>3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The</td>	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli 38 rgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3 520 5.9 0.84 22 31 7.7 850	r sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more e 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc Arthogen And Vector Attraction Record Report the vector attraction reduction for the sector attraction reduction of the sector attraction of the secto	Num pollutant conce with 40 CFR 50 of bulk sewage stions in the sewage stions in the sewage stions in the sewage stions in the sewage store code state search cod	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sold e sludge exceed a land appli 38 rgn=div5#se40.32.503_11 13 (http://www.ecfr.gov/cgi-bi should be reported in milligra are reporting no data for the Parameter Concentrat or Pass/Fail) 20 2.3 520 5.9 0.84 22 31 7.7 850	* sewage sludge that was applied cgi-bin/text-idx?node=pt40.32.50 or gave away sewage sludge in cation ceiling pollutant limit (Tab I3)). EPA will compare the pollut n/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis	3&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more l 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis. ameter. If No Data, Select One Of The Following

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	18.5	
Cadmium	=	2.15	
Copper	=	490	
Lead	=	5.35	
Mercury	=	0.6	
Nickel	=	29.5	
Selenium	=	6.15	
Zinc	=	770	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	51000	

Compliance	Monitoring	Event No.	12
------------	------------	-----------	----

Compliance Monitoring Period Start Date: 12/01/2020

Compliance Monitoring Period End Date: 12/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	19	
Cadmium	=	2.6	
Copper	=	490	
Lead	=	6.9	
Mercury	=	0.49	
Molybdenum	=	22	
Nickel	=	33	
Selenium	=	8.4	
Zinc	=	800	

Pathogen And Vector Attraction Reduction

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	16.5	
Cadmium	=	2.5	
Copper	=	450	
Lead	=	5.25	
Mercury	=	0.435	
Nickel	=	30	
Selenium	=	8.35	
Zinc	=	730	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	47000	

ID: 001

Amount: 151

Management Practice Detail: Distribution and Marketing - Compost

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Preparer

NPDES ID of handler:

Facility Information: Synagro - AZ Soils 5615 S. 91st Avenue Tolleson, AZ 85353

Pathogen Class: Class A EQ

Sewage Sludge or Biosolids Pathogen Reduction Options:

Class A-Alternative 5: PFRP 1: Composting

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- Option 1 Volatile Solids Reduction
- Option 5 Aerobic Processing (Thermophilic Aerobic Digestion/Composting)

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

Contact Information:

623-936-6328 Cgeyer@synagro.com

Geyer

Area Director of Composting

Craig

□YES INO □UNKNOWN

Monitoring Data INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503 18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B). **Compliance Monitoring Periods** INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)). Compliance Monitoring Event No. 1 **Compliance Monitoring Period Start Date: Compliance Monitoring Period End Date:** 01/01/2020 01/31/2020 Do you have analytical results to report for this monitoring period? YES ONO Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.1 □YES INO Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503 113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter. Value If No Data, Select One Of The Sewage Sludge or Biosolids Parameter Concentration (mg/kg, dry-weight basis Qualifier Following Parameter or Pass/Fail) 7.2 Arsenic = Cadmium = 1.9 = Copper 440 Lead = 15 Mercury = 1.4 Molybdenum = 16 Nickel = 24 Selenium = 7 = 880 Zinc

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	25	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter Val	alue Qualifier Va	Value If No Data, Select One Of The Followin	g
--	-------------------	--	---

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=965/programReport?formId=3067893/details/view-programReport 34/67

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.2	
Cadmium	=	1.9	
Copper	=	440	
Lead	=	15	
Mercury	=	1.4	
Nickel	=	24	
Selenium	=	7	
Zinc	=	880	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	34401	

	Compliance Monitoring Period Start Date: 02/01/2020		Compliance Monitoring Period End Date: 02/29/2020	
Do you have analytical results to report for this monito	oring period?	YES NO		

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□ YES I NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
=	1.3	
=	0.37	
=	82	
=	2.9	
=	1.1	
=	2.8	
	Qualifier = = = = = =	Qualifier or Pass/Fail) = 1.3 = 0.37 = 82 = 2.9 = 1.1

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	4.8	
Selenium	=	2.1	
Zinc	=	170	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	85	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.3	
Cadmium	=	0.37	
Copper	=	82	
Lead	=	2.9	
Mercury	=	1.1	
Nickel	=	4.8	
Selenium	=	2.1	
Zinc	=	170	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	42401	

Compliance Monitoring Event No. 3

03/01/2020

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date: 03/31/2020

Do you have analytical results to report for this monitoring period? ☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑ NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.1	
Cadmium	=	1.2	
Copper	=	350	
Lead	=	12	
Mercury	=	1.3	
Molybdenum	=	10	
Nickel	=	18	
Selenium	=	5	
Zinc	=	670	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	=	160	
Salmonella	<	2	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.1	
Cadmium	=	1.2	
Copper	=	350	
Lead	=	12	
Mercury	=	1.3	
Nickel	=	18	
Selenium	=	5	
Zinc	=	670	

1	EPA Biosolids					
Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.						
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following			
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	35914				
Compliance Monitoring Event No. 4			Compliance Monitoring Period End Date: 04/30/2020			
Do you have analytical results to report	for this monitori	ng period? 🕑 YES 🗆 NO				
event? [For example, this will be the cas period.]		at are equivalent to the monthly average pollutant co lected and analyzed one sample of sewage sludge c				
□YES I NO						
Maximum Concentration Data for All Sev	vage Sludge or E	Biosolids Applied to Land				
period for this SSUID. In accordance wi regulations prohibit land application of b sewage sludge pollutant concentrations (http://www.ecfr.gov/cgi-bin/text-idx?noc ceiling concentration limits in Table 1 of	th 40 CFR 503.13 oulk sewage sludg in the sewage slu le=pt40.32.503&r 40 CFR 503.13 (l	rations in the biosolids or sewage sludge that was appli 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.5 ge or sewage sludge sold or gave away sewage sludge udge exceed a land application ceiling pollutant limit (Ta gn=div5#se40.32.503_113)). EPA will compare the pollu http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503& ild be reported in milligrams per kilogram (mg/kg), dry w	503&rgn=div5#se40.32.503_113), EPA's in a bag or other container when one or more ible 1 of 40 CFR 503.13 utant concentrations in this section against the rgn=div5#se40.32.503_113) to identify			
Please only select a "No Data Indicator	Code" if you are	reporting no data for the sampling period or particular particular particular particular particular particular	arameter.			

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.4	
Cadmium	=	1.5	
Copper	=	420	
Lead	=	14	
Mercury	=	1.2	
Molybdenum	=	15	
Nickel	=	22	
Selenium	=	6.9	
Zinc	=	830	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	27	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.64	
Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids			If No Data, Select One Of The
Parameter	Qualifier	or Pass/Fail)	Following
Arsenic	=	6.4	
Cadmium	=	1.5	
Copper	=	420	
Lead	=	14	
Mercury	=	1.2	
Nickel	=	22	
Selenium	=	6.9	
Zinc	=	830	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	39215	

Compliance Monitoring Event No. 5

Compliance Monitoring Period Start Date: 05/01/2020

Compliance Monitoring Period End Date: 05/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed a should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.3	
Cadmium	=	0.32	
Copper	=	79	
Lead	=	2.9	
Mercury	=	1.1	
Molybdenum	=	2.5	
Nickel	=	4.6	
Selenium	<	2	
Zinc	=	160	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	32	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	56.76	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.3	
Cadmium	=	0.32	
Copper	=	79	
Lead	=	2.9	
Mercury	=	1.1	
Nickel	=	4.6	
Selenium	<	2	
Zinc	=	160	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weigh basis)	t If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	40112	
Compliance Monitoring Event No. 6		ompliance Monitoring Period Start Date: 5/01/2020	Compliance Monitoring Period End Date: 06/30/2020
Do you have analytical results to report f	or this monitori	ng period? ☞ YES □ NO	
		at are equivalent to the monthly average pollutant lected and analyzed one sample of sewage sludg	-
🗆 YES 🕑 NO			
Maximum Concentration Data for All Sev	/age Sludge or I	Biosolids Applied to Land	
period for this SSUID. In accordance wil regulations prohibit land application of b sewage sludge pollutant concentrations (http://www.ecfr.gov/cgi-bin/text-idx?nod	h 40 CFR 503.13 ulk sewage sludg in the sewage sludg e=pt40.32.503&r	rations in the biosolids or sewage sludge that was ap 3(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.3 ge or sewage sludge sold or gave away sewage sludg udge exceed a land application ceiling pollutant limit (gn=div5#se40.32.503_113)). EPA will compare the p http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503	2.503&rgn=div5#se40.32.503_113), EPA's ge in a bag or other container when one or more Table 1 of 40 CFR 503.13 ollutant concentrations in this section against the

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.9	
Cadmium	=	0.48	
Copper	=	130	
Lead	=	4.2	
Mercury	=	1	
Molybdenum	=	6.1	
Nickel	=	7.3	
Selenium	=	2.4	
Zinc	=	270	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	24	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.66	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	1.9	
Cadmium	=	0.48	
Copper	=	130	
Lead	=	4.2	
Mercury	=	1	
Nickel	=	7.3	
Selenium	=	2.4	
Zinc	=	270	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	38113	

Compliance Monitoring Event No. 7

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date:

2/1	7/202	1
-----	-------	---

021	021 EPA Biosol	ids
	07/01/2020	07/31/2020
	Do you have analytical results to report for this monitoring period?	
	Are you reporting maximum pollutant concentrations that are equivalent to the monthly aver event? [For example, this will be the case if you only collected and analyzed one sample of s period.]	

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	9.2	
Cadmium	=	2.9	
Copper	=	490	
Lead	=	17	
Mercury	=	1	
Molybdenum	=	20	
Nickel	=	23	
Selenium	=	10	
Zinc	=	890	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	27	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	lf No Data, Select One Of The Following
Arsenic	=	9.2	
Cadmium	=	2.9	
Copper	=	490	

EPA Biosolids

	li li			
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	ation (mg/kg, dry-weight basis	If No Data, Select One Of The Following
Lead	=	17		
Mercury	=	1		
Nickel	=	23		
Selenium	=	10		
Zinc	=	890		
Report the average concentration (applied to land during the compliar		, .	(N plus Nitrate-Nitrite, as N) in th	e sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conc basis)	entration (mg/kg, dry-weight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitri	te) =	40211		
				1
				d to land during the compliance monitoring
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewag ?node=pt40.32.5 node=pt40 CFR 503. t monitoring data s	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app J3&rgn=div5#se40.32.503_ 13 (http://www.ecfr.gov/cgi-l should be reported in milligr	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i lication ceiling pollutant limit (Tal 113)). EPA will compare the pollu oin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we	tant concentrations in this section against the gn=div5#se40.32.503_113) to identify eight basis.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewag ?node=pt40.32.5 node=pt40 CFR 503. t monitoring data s	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app y3&rgn=div5#se40.32.503 13 (http://www.ecfr.gov/cgi-l should be reported in milligr are reporting no data for the	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i lication ceiling pollutant limit (Tal 113)). EPA will compare the pollu oin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we	03&rgn=div5#se40.32.503_113), EPA's in a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter	num pollutant con ce with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data s cator Code" if you Value	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app y3&rgn=div5#se40.32.503 13 (http://www.ecfr.gov/cgi-l should be reported in milligr are reporting no data for the Parameter Concentra	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic	num pollutant con pe with 40 CFR 50 n of bulk sewage s tions in the sewag ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data s cator Code" if you Value Qualifier	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app 13&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-l should be reported in milligr are reporting no data for the Parameter Concentra or Pass/Fail)	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant con se with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data s cator Code" if you Value Qualifier =	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi- l3 (http://www.ecfr.gov/cgi- should be reported in milligr are reporting no data for the Parameter Concentration or Pass/Fail) 7.1	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium	num pollutant con se with 40 CFR 50 o of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data s cator Code" if you Value Qualifier = =	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503_1 13 (http://www.ecfr.gov/cgi-l should be reported in milligr are reporting no data for the Parameter Concentration or Pass/Fail) 7.1 1.4	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	num pollutant con pe with 40 CFR 50 n of bulk sewage s tions in the sewag ?node=pt40.32.5(1 of 40 CFR 503. t monitoring data s extor Code" if you Value Qualifier = = =	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov 3.13(a) (http://www.ecfr.gov ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-ishould be reported in milligr are reporting no data for the or Pass/Fail) 7.1 1.4 430	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	num pollutant con se with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.5(1 of 40 CFR 503. t monitoring data s sator Code" if you Value Qualifier = = = = =	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solids e sludge exceed a land application of the sewage sludge exceeds a land application of the sewage exceeds are sewage exceeds and the sewage exceeds are sewage exceed	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	num pollutant con se with 40 CFR 50 n of bulk sewage s tions in the sewage ?node=pt40.32.50 1 of 40 CFR 503. t monitoring data s cator Code" if you Value Qualifier = = = = = = =	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solids e sludge erceed a land app. 13&rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-lishould be reported in milligrare reporting no data for the or Pass/Fail) 7.1 1.4 430 13 0.99	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maximperiod for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrat (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indice Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel	Num pollutant conce with 40 CFR 50 of bulk sewages tions in the sewag?node=pt40.32.5(1 of 40 CFR 503.tt monitoring data stator Code" if you Value Qualifier =	Centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ludge or sewage sludge solide solide e sludge exceed a land app 33&rgn=div5#se40.32.503_13 (http://www.ecfr.gov/cgi-ishould be reported in milligr are reporting no data for the or Parameter Concentration Parameter Concentratio	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium	num pollutant con se with 40 CFR 50 n of bulk sewage s tions in the sewag ?node=pt40.32.5(1 of 40 CFR 503. t monitoring data s cator Code" if you Value Qualifier = = = = = = = = = = = = = = = = =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 j3&rgn=div5#se40.32.503_13 ja ja j3 j4 j3 j3 j3 j3 j3 j3 j430 j3 j3 j3 j3 j3 j3 j3 j3 j3 j430 j3 j3 j430 j431 j430 j431 j432 j433 j433 j434 j435 j444 j445 j436 j446 <tr< th=""><th>or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa</th><th>03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.</th></tr<>	or sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i blication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa	03&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify bight basis. rameter.
period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc Report the pathogen densities in th	Value Qualifier = <t< td=""><td>centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503</td><td>br sewage sludge that was applied /(gi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i plication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular panal ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis d to land during the reporting yea</td><td>D3&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify sight basis. rameter. If No Data, Select One Of The Following If no Data, Select One Of The Following</td></t<>	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503	br sewage sludge that was applied /(gi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i plication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular panal ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis d to land during the reporting yea	D3&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify sight basis. rameter. If No Data, Select One Of The Following If no Data, Select One Of The Following
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indic Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc Report the pathogen densities in th	Value Qualifier = <t< td=""><td>centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503</td><td>br sewage sludge that was applie /(cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i plication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular panal ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis d to land during the reporting year B – Alternative 1 management of</td><td>D3&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify sight basis. rameter. If No Data, Select One Of The Following</td></t<>	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503	br sewage sludge that was applie /(cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i plication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular panal ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis d to land during the reporting year B – Alternative 1 management of	D3&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify sight basis. rameter. If No Data, Select One Of The Following
This section summarizes the maxir period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idx ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indio Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc Tabogen And Vector Attraction Recor Report the pathogen densities in th pathogen density for Class A sewa	Num pollutant conce with 40 CFR 50 of bulk sewage stions in the sewage stions in the sewage sector code" if you Value Qualifier =	centrations in the biosolids of 3.13(a) (http://www.ecfr.gov/ ludge or sewage sludge sol e sludge exceed a land app j3&rgn=div5#se40.32.503	br sewage sludge that was applie //cgi-bin/text-idx?node=pt40.32.5 d or gave away sewage sludge i plication ceiling pollutant limit (Tal 113)). EPA will compare the pollu pin/text-idx?node=pt40.32.503&r ams per kilogram (mg/kg), dry we e sampling period or particular pa ation (mg/kg, dry-weight basis ation (mg/kg, dry-weight basis d to land during the reporting yea B – Alternative 1 management o 503.32(b)(2)].	D3&rgn=div5#se40.32.503_113), EPA's n a bag or other container when one or more ble 1 of 40 CFR 503.13 tant concentrations in this section against the gn=div5#se40.32.503_113) to identify sight basis. rameter. If No Data, Select One Of The Following If no Data, Select One Of The Following

		EPA Biosolids				
Sewage Sludge or Biosolids Para	meter	Value Qualifier	Value	lf No Data, Sel	ect One Of The Following	
Salmonella		<	1			
Report the vector attraction reduct monitoring period for this SSUID.	tion data for the bi	osolids or sewage sluc	lge that was placed on	an active sewage slu	idge unit during the compliance	
Sewage Sludge or Biosolids Para	meter	Value Qualifier	Value	If No Data, Sel	ect One Of The Following	
Solids, total volatile percent remova	I	=	50			
onthly Average Pollutant Concern This section summarizes the mon monitoring period for this SSUID. Sewage Sludge or Biosolids	thly average pollu All pollutant monit Value	tant concentrations in t oring data should be re Parameter Con	he biosolids or sewage	sludge that was app r kilogram (mg/kg), o	Iry weight basis. If No Data, Select One Of The	
Parameter	Qualifier	or Pass/Fail)			Following	
Arsenic	=	7.1				
Cadmium	=	1.4				
Copper	=	430				
Lead	=	13				
Mercury	=	0.99				
Nickel	=	19				
Selenium	=	8.6				
Zinc	=	790				
Rowago Sludgo or Disselida	Value		Concentration (mg/kç	ı, dry-weight	If No Data, Select One Of The Following	
Sewage Sludge or Biosolids Parameter	Qualifier	basis)				
Parameter		37501				
Parameter		,				
Sewage Sludge of Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. 9	rite) =	37501	oring Period Start Dat	•	oliance Monitoring Period End Date: 0/2020	
Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. S o you have analytical results to re re you reporting maximum polluta vent? [For example, this will be th eriod.]	eport for this mor	37501 Compliance Monito 09/01/2020 hitoring period?		09/36 ge pollutant concer	0/2020 htrations for this compliance monitorio	
Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. S o you have analytical results to re re you reporting maximum polluta	eport for this mor	37501 Compliance Monito 09/01/2020 hitoring period?		09/36 ge pollutant concer	0/2020 htrations for this compliance monitori	
Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. S o you have analytical results to re re you reporting maximum polluta vent? [For example, this will be th eriod.] □ YES I NO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentra-	eport for this mon ant concentration e case if you onl imum pollutant co nace with 40 CFR 5 n of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 503	37501 Compliance Monito 09/01/2020 nitoring period? as that are equivalent y collected and analy collected and analy e or Biosolids Applien so 3.13(a) (http://www.ed sludge or sewage slud ge sludge exceed a lar 03&rgn=div5#se40.32 .13 (http://www.ecfr.gc	YES □ NO to the monthly average zed one sample of se d to Land solids or sewage sludge cfr.gov/cgi-bin/text-idx? ige sold or gave away s id application ceiling pr .503_113)). EPA will co w/cgi-bin/text-idx?node	ge pollutant concer wage sludge or bio that was applied to node=pt40.32.503&r ewage sludge in a b illutant limit (Table 1 mpare the pollutant =pt40.32.503&rgn=d	htrations for this compliance monitoring solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify	
Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. 9 o you have analytical results to re- re you reporting maximum polluta vent? [For example, this will be th eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table	eport for this more ant concentration e case if you onl imum pollutant conce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 503 nt monitoring data	37501 Compliance Monito 09/01/2020 nitoring period? notes that are equivalent y collected and analy e or Biosolids Applied notentrations in the bios 03.13(a) (http://www.ed sludge or sewage slud ge sludge exceed a lan 03&rgn=div5#se40.32 .13 (http://www.ecfr.go should be reported in	YES □ NO to the monthly average zed one sample of se d to Land solids or sewage sludge cfr.gov/cgi-bin/text-idx? ge sold or gave away s nd application ceiling po .503_113)). EPA will co wi/cgi-bin/text-idx?node milligrams per kilogram	ge pollutant concer wage sludge or bio that was applied to node=pt40.32.503&r ewage sludge in a b ollutant limit (Table 1 mpare the pollutant =pt40.32.503&rgn=d (mg/kg), dry weight	htrations for this compliance monitori solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis.	
Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. S o you have analytical results to re re you reporting maximum polluta vent? [For example, this will be th eriod.] □ YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr- (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Ind Sewage Sludge or Biosolids	eport for this more ant concentration e case if you onl imum pollutant conce with 40 CFR 5 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 503 nt monitoring data	37501 Compliance Monito 09/01/2020 nitoring period? It s that are equivalent y collected and analy e or Biosolids Applied nocentrations in the bios 03.13(a) (http://www.ed sludge or sewage sludg ge sludge exceed a lan 03&rgn=div5#se40.32 .13 (http://www.ecfr.go should be reported in a are reporting no data	YES □ NO to the monthly average zed one sample of se d to Land solids or sewage sludge cfr.gov/cgi-bin/text-idx? ge sold or gave away s nd application ceiling po .503_113)). EPA will co wi/cgi-bin/text-idx?node milligrams per kilogram	<u>o9/3</u> ge pollutant concer wage sludge or bio that was applied to node=pt40.32.503&r ewage sludge in a b ollutant limit (Table 1 mpare the pollutant =pt40.32.503&rgn=d (mg/kg), dry weight or particular parame	htrations for this compliance monitori solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis.	
Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. S o you have analytical results to re re you reporting maximum polluta vent? [For example, this will be th eriod.] □ YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordar regulations prohibit land applicatic sewage sludge pollutant concentr. (http://www.ecfr.gov/cgi-bin/text-id ceiling concentration limits in Table noncompliance events. All pollutant	eport for this more ant concentration e case if you onl inum pollutant conce with 40 CFR 50 on of bulk sewage ations in the sewa x?node=pt40.32.5 e 1 of 40 CFR 503 nt monitoring data icator Code" if you	37501 Compliance Monito 09/01/2020 nitoring period? nitoring period? notes that are equivalent y collected and analy e or Biosolids Applied notentrations in the bios 03.13(a) (http://www.ed sludge or sewage slud ge sludge exceed a lan 03&rgn=div5#se40.32 .13 (http://www.ecfr.go should be reported in a are reporting no data	YES NO to the monthly average zed one sample of se d to Land solids or sewage sludge cfr.gov/cgi-bin/text-idx? Ige sold or gave away s nd application ceiling pc d application ceiling pc sold or gave away s nd application ceiling pc d application ceiling pc nd application ceilin	<u>o9/3</u> ge pollutant concer wage sludge or bio that was applied to node=pt40.32.503&r ewage sludge in a b ollutant limit (Table 1 mpare the pollutant =pt40.32.503&rgn=d (mg/kg), dry weight or particular parame	Intrations for this compliance monitoring solids for this compliance monitoring gn=div5#se40.32.503_113), EPA's ag or other container when one or more of 40 CFR 503.13 concentrations in this section against the iv5#se40.32.503_113) to identify basis. eter.	

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=965/programReport?formId=3067893/details/view-programReport 44/67

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Copper	=	400	
Lead	=	11	
Mercury	=	0.92	
Molybdenum	=	16	
Nickel	=	18	
Selenium	=	7.8	
Zinc	=	810	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	24	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.3	
Cadmium	=	1.4	
Copper	=	400	
Lead	=	11	
Mercury	=	0.92	
Nickel	=	18	
Selenium	=	7.8	
Zinc	=	810	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	39901	

Compliance Monitoring Event No. 10

Compliance Monitoring Period Start Date: 10/01/2020

Compliance Monitoring Period End Date: 10/31/2020

Do you have analytical results to report for this monitoring period?

☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🛛 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in the section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.4	
Cadmium	=	1.3	
Copper	=	390	
Lead	=	11	
Mercury	=	0.79	
Molybdenum	=	18	
Nickel	=	17	
Selenium	=	8.6	
Zinc	=	800	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	28	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.46	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.4	
Cadmium	=	1.3	
Copper	=	390	
Lead	=	11	
Mercury	=	0.79	
Nickel	=	17	

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight or Pass/Fail)	basis If No Data, Select One Of The Following
Selenium	=	8.6	
Zinc	=	800	
Report the average concentration applied to land during the complia		basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N iod for this SSUID.	N) in the sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-wei basis)	ight If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitr	rite) =	42111	
compliance Monitoring Event No. 1	1	Compliance Monitoring Period Start Date: 11/01/2020	Compliance Monitoring Period End Date: 11/30/2020
o you have analytical results to re	port for this moni	itoring period? 🗹 YES 🗆 NO	
re you reporting maximum polluta	ant concentrations		
vent? [For example, this will be the eriod.]	e case if you only II Sewage Sludge imum pollutant cond ace with 40 CFR 50 on of bulk sewage s ations in the sewag x?node=pt40.32.50 e 1 of 40 CFR 503. nt monitoring data s icator Code" if you a	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 13.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4/ sludge or sewage sludge sold or gave away sewage slu le sludge exceed a land application ceiling pollutant lim 3&rgn=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particu	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 to pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis.
Vent? [For example, this will be the eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids	e case if you only II Sewage Sludge imum pollutant cond ice with 40 CFR 50 in of bulk sewage s ations in the sewag x?node=pt40.32.50 e 1 of 40 CFR 503. int monitoring data s	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was (3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4/ sludge or sewage sludge sold or gave away sewage slu le sludge exceed a land application ceiling pollutant lin 03&rgn=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg),	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 to pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis.
Arent? [For example, this will be the priod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter	e case if you only II Sewage Sludge imum pollutant con- ice with 40 CFR 50 on of bulk sewage s ations in the sewag x?node=pt40.32.50 e 1 of 40 CFR 503, nt monitoring data s icator Code" if you a Value	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 13.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt44 sludge or sewage sludge sold or gave away sewage slu te sludge exceed a land application ceiling pollutant lim 13&rgn=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particut Parameter Concentration (mg/kg, dry-weight	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.
vent? [For example, this will be the eriod.] □ YES ☑ NO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic	e case if you only II Sewage Sludge imum pollutant cont ince with 40 CFR 50 on of bulk sewage s ations in the sewag x?node=pt40.32.50 e 1 of 40 CFR 503, nt monitoring data s icator Code" if you a Value Qualifier	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4/ iudge or sewage sludge sold or gave away sewage slu te sludge exceed a land application ceiling pollutant lin 03&rgn=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particut Parameter Concentration (mg/kg, dry-weight or Pass/Fail)	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.
Vent? [For example, this will be the priod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land application sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium	e case if you only	collected and analyzed one sample of sewage sluce or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4/ Judge or sewage sludge sold or gave away sewage slice le sludge exceed a land application ceiling pollutant lin D3&rgn=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 7.9	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.
Vent? [For example, this will be the eriod.] YES INO Aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	e case if you only	collected and analyzed one sample of sewage sluce or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4) sludge or sewage sludge sold or gave away sewage sludge exceed a land application ceiling pollutant lim 3& gra=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particular Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 7.9 1.3	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.
Vent? [For example, this will be the eriod.] YES INO Aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	e case if you only	collected and analyzed one sample of sewage sluct or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4! idd colspan="2">idd colspan="2" Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 7.9 1.3 440	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.
Vent? [For example, this will be the eriod.] YES INO Aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-idi ceiling concentration limits in Table noncompliance events. All pollutan Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	e case if you only	collected and analyzed one sample of sewage sluce or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4/ sludge or sewage sludge sold or gave away sewage slidge exceed a land application ceiling pollutant lin D3&rgn=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particutor or Pass/Fail) 7.9 1.3 440 11	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.
Vent? [For example, this will be the eriod.] YES INO Haximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentra (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar Please only select a "No Data Indi Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	e case if you only	collected and analyzed one sample of sewage slug or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4/ judge or sewage sludge sold or gave away sewage slidge exceed a land application ceiling pollutant lim Judge or sewage sludge sold or gave away sewage slidge exceed a land application ceiling pollutant lim Judge or sewage sludge sold or gave away sewage slidge exceed a land application ceiling pollutant lim Judge or sewage sludge that was Judge or sewage sludge exceed a land application ceiling pollutant lim Judge or sewage sludge that was Judge or sewage sludge sold or gave away sewage sludge that was Judge or sewage sludge exceed a land application ceiling pollutant lim Judge or sewage sludge that was Judge or sewage sludge that was Judge or sewage sludge sold or gave away sewage sludge Judge or sewage sludge that was Judge or sewage sludge that was	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.
eriod.] YES INO Haximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentration (http://www.ecfr.gov/cgi-bin/text-id: ceiling concentration limits in Table noncompliance events. All pollutar	e case if you only	collected and analyzed one sample of sewage sluct or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt44.idge or sewage sludge sold or gave away sewage slue sludge exceed a land application ceiling pollutant lin J3&rgn=div5#se40.32.503_113)). EPA will compare the 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particutor or Pass/Fail) 7.9 1.3 440 11 0.93 15	adge or biosolids for this compliance monitoring s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. aular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	27	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=965/programReport?formId=3067893/details/view-programReport 47/67

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	65.79	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.9	
Cadmium	=	1.3	
Copper	=	440	
Lead	=	11	
Mercury	=	0.93	
Nickel	=	19	
Selenium	=	8.6	
Zinc	=	880	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	38514	

Compliance Monitoring Event No. 12

Compliance Monitoring Period Start Date: 12/01/2020

Compliance Monitoring Period End Date: 12/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
=	9.1	
=	1.7	
=	460	
=	11	
=	0.92	
=	13	
	Qualifier = = = = = =	Qualifier or Pass/Fail) = 9.1 = 1.7 = 460 = 11 = 0.92

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	19	
Selenium	=	8.5	
Zinc	=	900	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	26	
Salmonella	<	1	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	9.1	
Cadmium	=	1.7	
Copper	=	460	
Lead	=	11	
Mercury	=	0.92	
Nickel	=	19	
Selenium	=	8.5	
Zinc	=	900	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	43216	

ID: 002

Amount: 1597

Management Practice Detail: Distribution and Marketing - Compost

Bulk or Bag/Container: Bulk

Handler, Preparer, or Applier Type: Off-Site Third-Party Preparer

NPDES ID of handler:

Facility Information:Liberty Compost12421 Holloway RoadLost Hills, CA 93249

Pathogen Class: Class A EQ

Sewage Sludge or Biosolids Pathogen Reduction Options:

Class A-Alternative 5: PFRP 1: Composting

Sewage Sludge or Biosolids Vector Attraction Reduction Options:

- Option 1 Volatile Solids Reduction
- Option 5 Aerobic Processing (Thermophilic Aerobic Digestion/Composting)

Did the facility land apply bulk sewage sludge when one or more pollutants in the sewage sludge exceeded 90 percent or more of any of the cumulative pollutant loading rates in Table 2 of 40 CFR 503.13?

□YES INO □UNKNOWN

Monitoring Data

INSTRUCTIONS: Pollutants, pathogen densities, and vector attraction reduction must be monitored when sewage sludge or biosolids are applied to the land. Please use the following section to report monitoring data for the land application conducted by you or your facility in the reporting period for this SSUID. These monitoring data should be representative of the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID (40 CFR 503.8(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_18)). All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis. EPA will be using these data to demonstrate compliance with EPA's land application requirements (40 CFR 503, Subpart B).

Compliance Monitoring Periods

INSTRUCTIONS: Please use the table below to identify the start date and end date for each compliance monitoring period. The number of compliance monitoring periods reported will correspond to the required frequency of monitoring (monthly, quarterly, semi-annually, or annually). For example, if monthly monitoring is required, you should report 12 compliance monitoring periods. The required frequency is determined by the number of metric tons (dry weight basis) of sewage sludge or biosolids land applied in the reporting period for this SSUID (40 CFR 503.16 (http://www.ecfr.gov/cgi-bin/text-idx? node=pt40.32.503&rgn=div5#se40.32.503_116)).

 Compliance Monitoring Event No. 1
 Compliance Monitoring Period Start Date:
 Compliance Monitoring Period End Date:

 01/01/2020
 01/31/2020
 01/31/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	8.4	
Cadmium	=	4.4	
Copper	=	460	
Lead	=	15	
Mercury	<	1	
Molybdenum	=	25	

EPA Biosolids

 Patrick
 McCarthy

 Site Manager
 661-797-2914

 patrickmccarthy@mccarthyfarms.com

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	40	
Selenium	=	18	
Zinc	=	760	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	58.7	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	8.4	
Cadmium	=	4.4	
Copper	=	460	
Lead	=	15	
Mercury	<	1	
Nickel	=	40	
Selenium	=	18	
Zinc	=	760	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	8800	
ista integer (interplus intelle-intelle)			

Compliance Monitoring Event No. 2

02/01/2020

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date: 02/29/2020

Do you have analytical results to report for this monitoring period? ☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑ NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	3.3	
Copper	=	380	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	16	
Nickel	=	30	
Selenium	=	9.5	
Zinc	=	640	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	52.08	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.7	
Cadmium	=	3.3	
Copper	=	380	
Lead	=	14	
Mercury	<	1	
Nickel	=	30	
Selenium	=	9.5	
Zinc	=	640	

1 EPA Biosolids				
Report the average concentration (mg/k applied to land during the compliance m		of Total Nitrogen (TKN plus Nitrate-Nitrite, as his SSUID.	N) in the s	ewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-w basis)	eight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	5400		
Samalianaa Maaidaying Eysad Na 2	Comm	liance Manifesting Deviad Chart Date:	0	
Compliance Monitoring Event No. 3	03/01	liance Monitoring Period Start Date: /2020		npliance Monitoring Period End Date: 31/2020
Do you have analytical results to report f	or this monitoring (period? 🗹 YES 🗆 NO		

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.1

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503 113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	3.4	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	16	
Nickel	=	32	
Selenium	=	10	
Zinc	=	660	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	61.36	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	3.4	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Nickel	=	32	
Selenium	=	10	
Zinc	=	660	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	4300	

Compliance Monitoring Event No. 4

Compliance Monitoring Period Start Date: 04/01/2020

Compliance Monitoring Period End Date: 04/30/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🕑 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), EPA's ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_13), is performed a should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6	
Cadmium	=	3.4	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	16	
Nickel	=	32	
Selenium	=	8.9	
Zinc	=	640	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

s	ewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
s	olids, total volatile percent removal	=	63.64	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6	
Cadmium	=	3.4	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Nickel	=	32	
Selenium	=	8.9	
Zinc	=	640	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	7100	
Compliance Monitoring Event No. 5		pliance Monitoring Period Start Date: 1/2020	Compliance Monitoring Period End Date: 05/31/2020
o you have analytical results to report f	or this monitoring	period? ⊠ YES □NO	
		are equivalent to the monthly average pollutant cted and analyzed one sample of sewage sludge	•
□YES YES			
aximum Concentration Data for All Sev	/age Sludge or Bio	osolids Applied to Land	
period for this SSUID. In accordance wil regulations prohibit land application of b sewage sludge pollutant concentrations	h 40 CFR 503.13(a ulk sewage sludge in the sewage slud	tions in the biosolids or sewage sludge that was app a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32 or sewage sludge sold or gave away sewage sludge ge exceed a land application ceiling pollutant limit (2503&rgn=div5#se40.32.503_113), EPA's e in a bag or other container when one or more Fable 1 of 40 CFR 503.13

ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	lf No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	40	
Copper	=	310	
Lead	=	12	
Mercury	<	1	
Molybdenum	=	17	
Nickel	=	26	
Selenium	=	8.3	
Zinc	=	550	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	56.76	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.3	
Cadmium	=	2.5	
Copper	=	310	
Lead	=	12	
Mercury	<	1	
Nickel	=	26	
Selenium	=	8.3	
Zinc	=	550	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	9700	

Compliance Monitoring Event No. 6

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date:

2/1	7/202	1
-----	-------	---

021	021 EP/	A Biosolids
	06/01/2020	06/30/2020
	Do you have analytical results to report for this monitoring period?	□NO
	Are you reporting maximum pollutant concentrations that are equivalent to the mon event? [For example, this will be the case if you only collected and analyzed one sa period.]	

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.2	
Cadmium	=	3.3	
Copper	=	430	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	18	
Nickel	=	28	
Selenium	=	8.6	
Zinc	=	670	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	53.66	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.2	
Cadmium	=	3.3	
Copper	=	430	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentra or Pass/Fail)	tion (mg/kg, dry-weight basis	If No Data, Select One Of The Following
Lead	=	14		
Mercury	<	1		
Nickel	=	28		
Selenium	=	8.6		
Zinc	=	670		
Report the average concentration (r applied to land during the compliance		, .	N plus Nitrate-Nitrite, as N) in the	e sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Conce basis)	entration (mg/kg, dry-weight	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite	e) =	6700		
🗆 YES 🗹 NO				
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx?	um polutant conc e with 40 CFR 503 of bulk sewage sli ions in the sewage node=pt40.32.503 1 of 40 CFR 503.1 monitoring data sl	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ 	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we	ant concentrations in this section against the jn=div5#se40.32.503_113) to identify ight basis.
Aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids	um polutant conc e with 40 CFR 503 of bulk sewage sli ions in the sewage node=pt40.32.503 1 of 40 CFR 503.1 monitoring data sl	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ udge or sewage sludge sold s sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-b nould be reported in milligra re reporting no data for the	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ms per kilogram (mg/kg), dry we	03&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the n=div5#se40.32.503_113) to identify ight basis.
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter	um pollutant conc e with 40 CFR 503 of bulk sewage sh ions in the sewage Phode=pt40.32.503 1 of 40 CFR 503.1 monitoring data sh ator Code" if you a	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ udge or sewage sludge sold sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-thould be reported in milligra re reporting no data for the Parameter Concentra	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic	um pollutant conc e with 40 CFR 503 of bulk sewage sli ions in the sewage node=pt40.32.503 1 of 40 CFR 503.1 monitoring data sl ator Code" if you a Value Qualifier	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ udge or sewage sludge solv sludge exceed a land app 8&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-thould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail)	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordanci regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium	um pollutant conc e with 40 CFR 503 of bulk sewage shi ions in the sewage node=pt40.32.503 1 of 40 CFR 503.1 monitoring data sh ator Code" if you a Value Qualifier =	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ .dge or sewage sludge solv sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-b hould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium	um pollutant conc e with 40 CFR 503 of bulk sewage shi ions in the sewage Prode=pt40.32.503 1 of 40 CFR 503.1 monitoring data sh ator Code" if you a Value Qualifier = =	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ .dge or sewage sludge sold sludge exceed a land app 8&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-bio hould be reported in milligration re reporting no data for the Parameter Concentration or Pass/Fail) 5.7 3.1	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx2 ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	um pollutant conc e with 40 CFR 503 of bulk sewage sli ions in the sewage node=pt40.32.503 1 of 40 CFR 503.1 monitoring data sl ator Code" if you a Value Qualifier = = =	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ udge or sewage sludge solu- sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- nould be reported in milligra- re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	um pollutant conce e with 40 CFR 503 of bulk sewage slitons in the sewage ions in the sewage ionde=pt40.32.503 1 of 40 CFR 503.1 monitoring data slator Code" if you a Value Qualifier = = = = = = = = = = = =	entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge solo sludge exceed a land app 8%rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-trould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordanc regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	Value Qualifier = = = = = <	entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge solver sludge exceed a land app 3&rgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-bio hould be reported in milligratering re reporting no data for the Parameter Concentration or Pass/Fail) 5.7 3.1 390 12 1	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel	um pollutant conce e with 40 CFR 503 of bulk sewage slipons in the sewage ions in the sewage node=pt40.32.501 1 of 40 CFR 503.1 monitoring data slip ator Code" if you a Value Qualifier = = = = = = = = = = = = = = = = = =	entrations in the biosolids of .13(a) (http://www.ecfr.gov/ udge or sewage sludge sold sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- hould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx? ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium	um pollutant conce e with 40 CFR 503 of bulk sewage slipons in the sewage ions in the sewage ionde=pt40.32.503 1 of 40 CFR 503.1 monitoring data slip ator Code" if you a Value Qualifier =	entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge solv sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-to nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17 27	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the in=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The
Iaximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx2 ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc athogen And Vector Attraction Reduction Report the pathogen densities in the	um pollutant conce e with 40 CFR 503 of bulk sewage slipons in the sewage ions in the sewage ionde=pt40.32.503 1 of 40 CFR 503.1 monitoring data slip ator Code" if you a Value Qualifier = </td <td>entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge solo sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17 27 7.1 620 r biosolids that was applied</td> <td>r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis</td> <td>93&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the gn=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following If No Data, Select One Of The Following</td>	entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge solo sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-t- nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17 27 7.1 620 r biosolids that was applied	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge ir lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis	93&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the gn=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following If No Data, Select One Of The Following
aximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx2 ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc athogen And Vector Attraction Reduction in the	um pollutant conce e with 40 CFR 503 of bulk sewage slipons in the sewage ions in the sewage ionde=pt40.32.503 1 of 40 CFR 503.1 monitoring data slip ator Code" if you a Value Qualifier = </td <td>entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge sold sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-to nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17 27 7.1 620 r biosolids that was applied ids. When using the Class</td> <td>r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis</td> <td>33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the inn=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following If No Data, Select One Of The Following</td>	entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge sold sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-to nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17 27 7.1 620 r biosolids that was applied ids. When using the Class	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis	33&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the inn=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following If No Data, Select One Of The Following
Iaximum Concentration Data for All This section summarizes the maxim period for this SSUID. In accordance regulations prohibit land application sewage sludge pollutant concentrati (http://www.ecfr.gov/cgi-bin/text-idx2 ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Indica Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc rathogen And Vector Attraction Reduction Report the pathogen densities in the pathogen density for Class A sewage	um pollutant conce e with 40 CFR 503 of bulk sewage slivons in the sewage ions in the sewage node=pt40.32.503 1 of 40 CFR 503.1 monitoring data slip ator Code" if you a Value Qualifier = <td>entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge sold sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-to nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17 27 7.1 620 r biosolids that was applied ids. When using the Class</td> <td>r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis tion (mg/kg, dry-weight basis</td> <td>93&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the gn=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following If No Data, Select One Of The Following</td>	entrations in the biosolids of 13(a) (http://www.ecfr.gov/ udge or sewage sludge sold sludge exceed a land app 8krgn=div5#se40.32.503_1 3 (http://www.ecfr.gov/cgi-to nould be reported in milligra re reporting no data for the Parameter Concentra or Pass/Fail) 5.7 3.1 390 12 1 17 27 7.1 620 r biosolids that was applied ids. When using the Class	r sewage sludge that was applie (cgi-bin/text-idx?node=pt40.32.50 d or gave away sewage sludge in lication ceiling pollutant limit (Tab 13)). EPA will compare the pollut in/text-idx?node=pt40.32.503&rg ams per kilogram (mg/kg), dry we sampling period or particular par tion (mg/kg, dry-weight basis tion (mg/kg, dry-weight basis	93&rgn=div5#se40.32.503_113), EPA's a bag or other container when one or more le 1 of 40 CFR 503.13 ant concentrations in this section against the gn=div5#se40.32.503_113) to identify ight basis. rameter. If No Data, Select One Of The Following If No Data, Select One Of The Following

https://cdxnodengn.epa.gov/net-biosolids/action/secured/home#!/facilities/facility?id=965/programReport?formId=3067893/details/view-programReport 58/67

			EPA Biosolid	S	
Sewage Sludge or Biosolids Para	meter	Value Qualifier	Value	If No Data, Sele	ect One Of The Following
Salmonella		<	3		
Report the vector attraction reduct monitoring period for this SSUID.	tion data for the bio	solids or sewage sludge th	nat was placed on a	an active sewage slu	dge unit during the compliance
Sewage Sludge or Biosolids Para	meter	Value Qualifier	Value	If No Data, Sele	ect One Of The Following
Solids, total volatile percent removal	1	=	64		
onthly Average Pollutant Concent This section summarizes the mont monitoring period for this SSUID. / Sewage Sludge or Biosolids	thly average polluta	nt concentrations in the bi	osolids or sewage ed in milligrams pe	sludge that was appl r kilogram (mg/kg), d	
Parameter	Qualifier	or Pass/Fail)			Following
Arsenic	=	5.7			
Cadmium	=	3.1			
Copper	=	390			
Lead	=	12			
Mercury	<	1			
Nickel	=	27			
Selenium	=	7.1			
Zinc	=	620			
Report the average concentration applied to land during the compliant		, .	KN plus Nitrate-Ni	trite, as N) in the sew	age sludge or biosolids that was
applied to land during the complian Sewage Sludge or Biosolids		od for this SSUID.	KN plus Nitrate-Ni centration (mg/kg	, dry-weight	rage sludge or biosolids that was If No Data, Select One Of The Following
applied to land during the complian Sewage Sludge or Biosolids Parameter	Nce monitoring peri Value Qualifier	od for this SSUID. Parameter Con		, dry-weight	If No Data, Select One Of The
applied to land during the complian Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitr	value Qualifier rite) =	od for this SSUID. Parameter Cont basis)	centration (mg/kg	, dry-weight	If No Data, Select One Of The Following liance Monitoring Period End Date:
applied to land during the complian Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. 8 o you have analytical results to re re you reporting maximum polluta	value Qualifier rite) =	od for this SSUID. Parameter Combasis) 7400 Compliance Monitoring 08/01/2020 toring period? Ethat are equivalent to the second seco	Period Start Date YES □ NO	, dry-weight e: Comp 08/31 ge pollutant concen	If No Data, Select One Of The Following liance Monitoring Period End Date: /2020
applied to land during the compliant Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. 8 o you have analytical results to re re you reporting maximum polluta rent? [For example, this will be the period.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordant regulations prohibit land application sewage sludge pollutant concentration	Ince monitoring period Value Qualifier ite) = ant concentrations e case if you only II Sewage Sludge imum pollutant conduct with 40 CFR 50 on of bulk sewage sations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503.10 monitoring data satisfies	od for this SSUID. Parameter Combasis) 7400 Compliance Monitoring 08/01/2020 toring period? It that are equivalent to the collected and analyzed of collected and analyzed of collected and analyzed of collected and analyzed anal	Period Start Date Period Start Date YES DNO ne monthly average one sample of sev Land or sewage sludge tv/cgi-bin/text-idx?rode plication ceiling po _113)). EPA will coi- bin/text-idx?node rams per kilogram	, dry-weight :: Comp 08/31 ge pollutant concen wage sludge or bios that was applied to I node=pt40.32.503&rg ewage sludge in a ba Ilutant limit (Table 1 of mpare the pollutant c =pt40.32.503&rgn=di (mg/kg), dry weight I	If No Data, Select One Of The Following
applied to land during the compliant Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. 8 o you have analytical results to re re you reporting maximum polluta rent? [For example, this will be the eriod.] YES INO aximum Concentration Data for A This section summarizes the maxi period for this SSUID. In accordant regulations prohibit land application sewage sludge pollutant concentra- (http://www.ecfr.gov/cgi-bin/text-id, ceiling concentration limits in Table noncompliance events. All pollutant	Ince monitoring period Value Qualifier ite) = ant concentrations e case if you only II Sewage Sludge imum pollutant conduct with 40 CFR 50 on of bulk sewage sations in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503.10 monitoring data satisfies	od for this SSUID. Parameter Combasis) 7400 Compliance Monitoring 08/01/2020 toring period? It that are equivalent to the collected and analyzed of collected and analyzed of collected and analyzed of collected and analyzed anal	Period Start Date Period Start Date YES DNO ne monthly average one sample of sev Land or sewage sludge w/cgi-bin/text-idx?rode rold or gave away s plication ceiling po _113)). EPA will co -bin/text-idx?node: rams per kilogram ne sampling period	, dry-weight :: Comp 08/31 ge pollutant concen wage sludge or bios that was applied to I node=pt40.32.503&rg ewage sludge in a ba illutant limit (Table 1 of mpare the pollutant c =pt40.32.503&rgn=di (mg/kg), dry weight I or particular parame	If No Data, Select One Of The Following
applied to land during the compliant Sewage Sludge or Biosolids Parameter Total Nitrogen (TKN plus Nitrate-Nitr ompliance Monitoring Event No. 8 o you have analytical results to re re you reporting maximum polluta vent? [For example, this will be the ariod.]	Ince monitoring period Value Qualifier ite) = 3 eport for this monitoring period ant concentrations e case if you only II Sewage Sludge imum pollutant cond ince with 40 CFR 50 on of bulk sewage sitions in the sewage x?node=pt40.32.50 e 1 of 40 CFR 503.1 int monitoring data siticator Code" if you at some siticator Code	od for this SSUID. Parameter Combasis) 7400 Compliance Monitoring 08/01/2020 toring period? It that are equivalent to the collected and analyzed of collected and analyzed of collected and analyzed of collected and analyzed analyzed of collected and analyzed ana	Period Start Date Period Start Date YES DNO ne monthly average one sample of sev Land or sewage sludge w/cgi-bin/text-idx?rode rold or gave away s plication ceiling po _113)). EPA will co -bin/text-idx?node: rams per kilogram ne sampling period	, dry-weight :: Comp 08/31 ge pollutant concen wage sludge or bios that was applied to I node=pt40.32.503&rg ewage sludge in a ba illutant limit (Table 1 of mpare the pollutant c =pt40.32.503&rgn=di (mg/kg), dry weight I or particular parame	If No Data, Select One Of The Following

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Copper	=	330	
Lead	=	12	
Mercury	<	1	
Molybdenum	=	13	
Nickel	=	28	
Selenium	=	5	
Zinc	=	510	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	50	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	5.2	
Cadmium	=	2.4	
Copper	=	330	
Lead	=	12	
Mercury	<	1	
Nickel	=	28	
Selenium	=	5	
Zinc	=	510	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	6200	

Compliance Monitoring Event No. 9

Compliance Monitoring Period Start Date: 09/01/2020

Compliance Monitoring Period End Date: 09/30/2020

Do you have analytical results to report for this monitoring period?

☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

🗆 YES 🗹 NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113)). The will compare the pollutant concentrations in the section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503_rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.2	
Cadmium	=	3	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Molybdenum	=	21	
Nickel	=	31	
Selenium	=	10	
Zinc	=	650	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	7.2	
Cadmium	=	3	
Copper	=	410	
Lead	=	14	
Mercury	<	1	
Nickel	=	31	

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight or Pass/Fail)	basis If No Data, Select One Of The Following
Selenium	=	10	
Zinc	=	650	
Report the average concentration applied to land during the complia		t basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N iod for this SSUID.	N) in the sewage sludge or biosolids that was
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-we basis)	eight If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nit	trite) =	7100	
ompliance Monitoring Event No. [.]	10	Compliance Monitoring Period Start Date: 10/01/2020	Compliance Monitoring Period End Date: 10/31/2020
o you have analytical results to re	eport for this mon	itoring period? 🕑 YES 🗆 NO	
re you reporting maximum pollut. vent? [For example, this will be th eriod.] □ YES ☑ NO		conected and analyzed one sample of sewage sid	
vent? [For example, this will be the eriod.] YES NO Haximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All pollutant	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage trations in the sewag dx?node=pt40.32.50 le 1 of 40 CFR 503. ant monitoring data		s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 ne pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis.
vent? [For example, this will be the eriod.] YES NO Haximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicatio sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All pollutant	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage trations in the sewag dx?node=pt40.32.50 le 1 of 40 CFR 503. ant monitoring data	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was J3.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin J3&rgn=div5#se40.32.503_113)). EPA will compare th .13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg),	s applied to land during the compliance monitoring 40.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 le pollutant concentrations in this section against the 503&rgn=div5#se40.32.503_113) to identify , dry weight basis.
vent? [For example, this will be theriod.] YES NO Aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordant regulations prohibit land applications sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All pollutat Please only select a "No Data Indo Sewage Sludge or Biosolids	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage strations in the sewag dx?node=pt40.32.50 le 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 33.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lif J3&rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or partice Parameter Concentration (mg/kg, dry-weight	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The
vent? [For example, this will be theriod.] □ YES ☑ NO Iaximum Concentration Data for A This section summarizes the max period for this SSUID. In accordant regulations prohibit land applications sewage sludge pollutant concentre (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Table noncompliance events. All pollutant Please only select a "No Data Inden Sewage Sludge or Biosolids Parameter Arsenic	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage s rations in the sewag dx?node=pt40.32.50 le 1 of 40 CFR 503 ant monitoring data dicator Code" if you Value Qualifier	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 33.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin 03&rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or partice Parameter Concentration (mg/kg, dry-weight or Pass/Fail)	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The
vent? [For example, this will be theriod.] VES NO Iaximum Concentration Data for A This section summarizes the max period for this SSUID. In accordar regulations prohibit land applicatio sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage s rations in the sewage dx?node=pt40.32.50 le 1 of 40 CFR 503. ant monitoring data dicator Code" if you Value Qualifier =	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin 03.8rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or partice Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 6.7	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The
vent? [For example, this will be theriod.] YES NO Aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicati sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All pollutan Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage srations in the sewage tx?node=pt40.32.5 le 1 of 40 CFR 503. ant monitoring data dicator Code" if you Value Qualifier = =	or Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge cold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin J3&rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or partice Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 6.7 2.4	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The
Vent? [For example, this will be theriod.] VES INO Iaximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicati sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All pollutan Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage s rations in the sewage dx?node=pt40.32.50 le 1 of 40 CFR 503. ant monitoring data ticator Code" if you Value Qualifier = = = =	Por Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 33.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin D3&rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particle Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 6.7 2.4 430	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The
Vent? [For example, this will be theriod.] YES NO Aximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicatic sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All pollutan Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewages rations in the sewag dx?node=pt40.32.50 le 1 of 40 CFR 503. ant monitoring data dicator Code" if you Value Qualifier = = = =	Por Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin D3&rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or partice Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 6.7 2.4 430 14	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The
Vent? [For example, this will be theriod.] VES NO Iaximum Concentration Data for A This section summarizes the max period for this SSUID. In accordat regulations prohibit land applicatit sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All pollutan Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage s rations in the sewage dx?node=pt40.32.51 le 1 of 40 CFR 503. ant monitoring data dicator Code" if you Value Qualifier = = = = <	Por Biosolids Applied to Land ccentrations in the biosolids or sewage sludge that was 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin 303.8rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or particle Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 6.7 2.4 430 14 1	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The
Vent? [For example, this will be theriod.] YES INO Iaximum Concentration Data for A This section summarizes the max period for this SSUID. In accordan regulations prohibit land applicati sewage sludge pollutant concentr (http://www.ecfr.gov/cgi-bin/text-ic ceiling concentration limits in Tabl noncompliance events. All polluta Please only select a "No Data Ind Sewage Sludge or Biosolids Parameter Arsenic Cadmium Copper Lead Mercury Molybdenum	All Sewage Sludge kimum pollutant con nce with 40 CFR 50 on of bulk sewage s rations in the sewage dx?node=pt40.32.50 le 1 of 40 CFR 503 ant monitoring data ticator Code" if you Value Qualifier = = = = = = = = =	Por Biosolids Applied to Land centrations in the biosolids or sewage sludge that was 03.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt4 sludge or sewage sludge sold or gave away sewage sl ge sludge exceed a land application ceiling pollutant lin 03&rgn=div5#se40.32.503_113)). EPA will compare th 13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32. should be reported in milligrams per kilogram (mg/kg), are reporting no data for the sampling period or partice Parameter Concentration (mg/kg, dry-weight or Pass/Fail) 6.7 2.4 430 14 20	s applied to land during the compliance monitoring 10.32.503&rgn=div5#se40.32.503_113), EPA's ludge in a bag or other container when one or more mit (Table 1 of 40 CFR 503.13 te pollutant concentrations in this section against the .503&rgn=div5#se40.32.503_113) to identify , dry weight basis. sular parameter. If No Data, Select One Of The

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	63.46	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.7	
Cadmium	=	2.4	
Copper	=	430	
Lead	=	14	
Mercury	<	1	
Nickel	=	32	
Selenium	=	8.5	
Zinc	=	780	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids	Value	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The
Parameter	Qualifier		Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	7900	

Compliance Monitoring Event No. 11

Compliance Monitoring Period Start Date: 11/01/2020

Compliance Monitoring Period End Date: 11/30/2020

Do you have analytical results to report for this monitoring period?

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES INO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113)). EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
=	6.2	
=	2.4	
=	420	
=	14	
<	1	
=	19	
	Qualifier = = = =	Qualifier or Pass/Fail) = 6.2 = 2.4 = 420 = 14 <

EPA Biosolids

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Nickel	=	30	
Selenium	=	8.2	
Zinc	=	640	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B - Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	65.79	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	6.2	
Cadmium	=	2.4	
Copper	=	420	
Lead	=	14	
Mercury	<	1	
Nickel	=	30	
Selenium	=	8.2	
Zinc	=	640	

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following
Total Nitrogen (TKN plus Nitrate-Nitrite)	=	6600	

Compliance Monitoring Event No. 12

12/01/2020

Compliance Monitoring Period Start Date:

Compliance Monitoring Period End Date: 12/31/2020

Do you have analytical results to report for this monitoring period? ☑ YES □ NO

Are you reporting maximum pollutant concentrations that are equivalent to the monthly average pollutant concentrations for this compliance monitoring event? [For example, this will be the case if you only collected and analyzed one sample of sewage sludge or biosolids for this compliance monitoring period.]

□YES ☑ NO

Maximum Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the maximum pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. In accordance with 40 CFR 503.13(a) (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA's regulations prohibit land application of bulk sewage sludge or sewage sludge sold or gave away sewage sludge in a bag or other container when one or more sewage sludge pollutant concentrations in the sewage sludge exceed a land application ceiling pollutant limit (Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113), EPA will compare the pollutant concentrations in this section against the ceiling concentration limits in Table 1 of 40 CFR 503.13 (http://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113) to identify noncompliance events. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Please only select a "No Data Indicator Code" if you are reporting no data for the sampling period or particular parameter.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.3	
Cadmium	=	2.1	
Copper	=	330	
Lead	=	2.5	
Mercury	<	1	
Molybdenum	=	12	
Nickel	=	22	
Selenium	=	5.3	
Zinc	=	480	

Pathogen And Vector Attraction Reduction

Report the pathogen densities in the sewage sludge or biosolids that was applied to land during the reporting year for this SSUID. Please report the maximum pathogen density for Class A sewage sludge or biosolids. When using the Class B – Alternative 1 management option, please report the geometric mean of the density of fecal coliform in Class B sewage sludge or biosolids [see 40 CFR 503.32(b)(2)].

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Fecal Coliform	<	7.5	
Salmonella	<	3	

Report the vector attraction reduction data for the biosolids or sewage sludge that was placed on an active sewage sludge unit during the compliance monitoring period for this SSUID.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Value	If No Data, Select One Of The Following
Solids, total volatile percent removal	=	62.22	

Monthly Average Pollutant Concentration Data for All Sewage Sludge or Biosolids Applied to Land

This section summarizes the monthly average pollutant concentrations in the biosolids or sewage sludge that was applied to land during the compliance monitoring period for this SSUID. All pollutant monitoring data should be reported in milligrams per kilogram (mg/kg), dry weight basis.

Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis or Pass/Fail)	If No Data, Select One Of The Following
Arsenic	=	4.3	
Cadmium	=	2.1	
Copper	=	330	
Lead	=	2.5	
Mercury	<	1	
Nickel	=	22	
Selenium	=	5.3	
Zinc	=	480	

EPA Biosolids

Report the average concentration (mg/kg, dry weight basis) of Total Nitrogen (TKN plus Nitrate-Nitrite, as N) in the sewage sludge or biosolids that was applied to land during the compliance monitoring period for this SSUID.				
Sewage Sludge or Biosolids Parameter	Value Qualifier	Parameter Concentration (mg/kg, dry-weight basis)	If No Data, Select One Of The Following	

6500

Sludge Management - Surface Disposal

Total Nitrogen (TKN plus Nitrate-Nitrite)

Sludge Management - Incineration

Sludge Management - Other Management Practice

Additional Information

Please enter any additional information that you would like to provide in the comment box below.

=

OC San is attaching an electronic version of our annual report broken into several smaller sections. Alternatively, the complete file is available at www.ocsd.com/503. Please contact Deirdre Bingman if you have any questions: dbingman@ocsd.com 714.593.7459.

Additional Attachments

Name	Created Date	Size
3-AppxB_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:26 PM	138.81 KB
5-AppxD-F-EPA-ADEQ-Historys_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:27 PM	1.97 MB
2a-AppxA_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:23 PM	1.89 MB
4-AppxC-PriorPlInts_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:27 PM	900.26 KB
1-MainReport-2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:23 PM	2.46 MB
2b-AppxA_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:24 PM	2.51 MB
2c-AppxA_2020_Biosolids_Annual_503_Compliance_Report.pdf	02/16/2021 2:26 PM	2.10 MB

Certification Information

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the personity of fine and imprisonment for knowing violations. Signing an electronic document on behalf of another person is subject to criminal, civil, administrative, or other lawful action.

Certified By: Lan Wiborg (LWIBORG@OCSD.COM)

Certified On: 02/17/2021 9:02 AM

APPENDIX E

Arizona Department of Environmental Quality Biosolids Annual Report Form

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY AZPDES Individual Permits Unit 1110 W Washington Street Phoenix, Arizona 85007 (602) 771-4689 (voicemail) (602) 771-4505 (fax) Email to: biosolids@azdeq.gov

BIOSOLIDS OR SEWAGE SLUDGE ANNUAL REPORT FORM			
1. Program Information: All preparers (Generators) and Land Applicators Must complete the following.			
Reporting Start Date:1/1/2020	1/1/2020 Reporting End Date: 12/31/2020		
Date: 2/11/2021	AZPDES Permit # (if applicable):Click here to enter text.		
Date: 2/11/2021			
Company name (Preparer / Applicator): Orange County Sa	nitation District, Plant No. 1 and Plant No. 2		
Contact Name: Lan C. Wiborg, MPH	Title: Director of Environmental Services		
Address: 10844 Ellis Ave., Fountain Valley, CA 92708			
Phone: 714-593-7450	E-mail: lwiborg@ocsd.com		
Please select one of the following options pertaining to your	obligation to submit a Biosolids Annual Report. My facility is a:		
☑ POTW with a design flow equal to or greater than 1 MGD	Per Day		
☑ POTW that serves 10,000 people or more			
☑ Class I Sludge Management Facility as defined by 40 CFR 503.9			
Biosolids Applicator (Complete Section 5 only)			
Other Click here to enter text.			
What is the estimated total of volume of biosolids or sewage sludge generated at your facility (in dry metric tons)?			
47,106			
Were all biosolids removed from your facility sent to a landfill for disposal? No			
If yes, provide the name and address of the landfill(s). Click here to enter text.			
If all biosolids or sewage sludge was sent to a landfill for disposal, you do not need to complete the remainder of this form, as it is only applicable to facilities preparing biosolids or sewage sludge for land application.			
Certification: I certify, under penalty of law, that the information and descriptions, have been made under my direction and supervision and under a system designed to ensure that qualified personnel properly gather and evaluate the information used to determine whether the applicable biosolids requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.			
Signature: Van Date: 2/11/21 Title: Director of Environmental Services Date: 2/11/21			

- 2. Generator/Preparers Biosolids Storage and Treatment Processes
- 2.1 Please check the box next to the following biosolids or sewage sludge storage practices and treatment processes used on the sewage sludge or biosolids generated or produced at your facility during the reporting period.

Storage Practices

- □ Biosolids are stored in lined lagoons or impoundments
- \Box Biosolids stored directly on the ground

Physical Treatment Processes

- Preliminary Operations (e.g. sludge grinding, degritting, blending)
- Thickening (e.g. gravity floatation, centrifugation, belt filter press, vacuum filter)
- □ Sludge lagoon

Pathogen Reduction Operations (PSRP)

- □ Aerobic Digestion
- □ Air Drying (or "sludge drying beds")
- oxpi Anaerobic Digestion
- □ Lower Temperature Composting
- □ Lime Stabilization

Process to Further Reduce Pathogens (PFRP)

- □ Higher Temperature Composting
- □ Heat Drying (e.g. flash dryer, spray dryer, rotary dryer)
- □ Heat Treatment (Liquid sewage sludge is heated to temp of 356 °F (180 °C) or higher for 30 minutes
- □ Thermophilic Aerobic Digestion
- □ Beta Ray Irradiation
- □ Gamma Ray Irradiation
- □ Pasteurization

- 3. Generators/Preparers: Disposition of Biosolids or Sewage Treatment Sludge:
- 3.1 At the beginning of the year, did you have any biosolids or sewage sludge stored on site or remaining from previous years? Include any amount that is being stored anywhere. **No**

If yes provide the following information:

	CLASS A Biosolids	Class B Biosolids
Dry Ton Weight	Click here to enter text.	Click here to enter text.
Pathogen Testing	Choose an item.	Not applicable
Pathogen Reduction Method	Choose an item.	Choose an item.
Vector Attraction Reduction Method	Choose an item.	Choose an item.
Storage Locations	Click here to enter text.	Click here to enter text.

3.2 At the end of the year, are any biosolids or sewage sludge stored on site? No

If yes, provide the following information:

	CLASS A Biosolids	Class B Biosolids
Dry Ton Weight	Click here to enter text.	Click here to enter text.
Pathogen Testing	Choose an item.	Not applicable
Pathogen Reduction Method	Choose an item.	Choose an item.
Vector Attraction Reduction Method	Choose an item.	Choose an item.
Storage Locations	Click here to enter text.	Click here to enter text.

3.3 Were biosolids or sewage sludge received from another facility during the year, such as another wastewater treatment plant or another APP permitted facility for further processing? **No**

If yes provide the following information for each facility. Click the plus sign to create as many tables as needed.

Name of Facility		
Location:		
	CLASS A Biosolids	Class B Biosolids
Dry Ton Weight	Click here to enter text.	Click here to enter text.
Pathogen Testing	Choose an item.	Not applicable
Pathogen Reduction Method	Choose an item.	Choose an item.
Vector Attraction Reduction Method	Choose an item.	Choose an item.
Storage Locations	Click here to enter text.	Click here to enter text.

3.4. Were biosolids removed from your facility for land application? Include all recipients, including haulers, name, phone number, land applicators, composters, drying facilities, EQB bagging facilities, bulk composting, etc.

Name of Facility	Tule Ranch / Ag-Tech			
Management Practice Type:	Agricultural Land application	Agricultural Land application		
Handler or Preparer Type:	Off-Site Third-Party Handler or Ap	plier		
Management Practice Detail:	Agricultural Land application			
Bag or Bulk Container:	Bulk Container			
	CLASS A Biosolids Class B Biosolids			
Dry Ton Weight	Click here to enter text.	18,635		
Pathogen Testing	Choose an item.	Not applicable		
Pathogen Reduction Method	Choose an item.	Alternate 5 - anaerobic digestion		
Vector Attraction Reduction Method	Choose an item.	Option 1 - mass reduction		
Storage Locations	Click here to enter text.	Click here to enter text.		

Name of Facility	Synagro Nursery Products		
Management Practice Type:	Composting		
Handler or Preparer Type:	Off-Site Third-Party Preparer		
Management Practice Detail:	Composting		
Bag or Bulk Container:	Bulk Container		
	CLASS A Biosolids	Class B Biosolids	
Dry Ton Weight	16,708	Click here to enter text.	
Pathogen Testing	Salmonella	Not applicable	
Pathogen Reduction Method	Alternate 5 - composting	Choose an item.	
Vector Attraction Reduction Method	Option 5 - aerobic treatment	Choose an item.	
Storage Locations	Click here to enter text.	Click here to enter text.	

Name of Facility	Synagro Arizona Soils		
Management Practice Type:	Composting		
Handler or Preparer Type:	Preparer		
Management Practice Detail:	Composting		
Bag or Bulk Container:	Bulk Container		
	CLASS A Biosolids	Class B Biosolids	
Dry Ton Weight	345	Click here to enter text.	
Pathogen Testing	Salmonella	Not applicable	
Pathogen Reduction Method	Alternate 5 - composting	Choose an item.	
Vector Attraction Reduction Method	Option 5 - aerobic treatment	Choose an item.	
Storage Locations	Click here to enter text.	Click here to enter text.	

Name of Facility	Inland Empire Regional Composting Facility	
Management Practice Type:	Composting	
Handler or Preparer Type:	Preparer	
Management Practice Detail:	Composting	
Bag or Bulk Container:	Bulk Container	
	CLASS A Biosolids	Class B Biosolids
Dry Ton Weight	1,722	Click here to enter text.
Pathogen Testing	Salmonella	Not applicable
Pathogen Reduction Method	Alternate 5 - composting	Choose an item.
Vector Attraction Reduction Method	Option 5 - aerobic treatment	Choose an item.
Storage Locations	Click here to enter text.	Click here to enter text.

Name of Facility	Liberty Compost		
Management Practice Type:	Composting		
Handler or Preparer Type:	Preparer		
Management Practice Detail:	Composting		
Bag or Bulk Container:	Bulk Container		
	CLASS A Biosolids	Class B Biosolids	
Dry Ton Weight	8,998	Click here to enter text.	
Pathogen Testing	Salmonella	Not applicable	
Pathogen Reduction Method	Alternate 5 - composting	Choose an item.	
Vector Attraction Reduction Method	Option 5 - aerobic treatment	Choose an item.	
Storage Locations	Click here to enter text.	Click here to enter text.	

Name of Facility	Synagro South Kern Compost Manufacturing		
Management Practice Type:	Composting		
Handler or Preparer Type:	Off-Site Third-Party Preparer		
Management Practice Detail:	Composting		
Bag or Bulk Container:	Bulk Container		
	CLASS A Biosolids	Class B Biosolids	
Dry Ton Weight	698	Click here to enter text.	
Pathogen Testing	Salmonella	Not applicable	
Pathogen Reduction Method	Alternate 5 - composting	Choose an item.	
Vector Attraction Reduction Method	Option 5 - aerobic treatment	Choose an item.	
Storage Locations	Click here to enter text.	Click here to enter text.	

Enter any content that you want to repeat, including other content controls. You can also insert this control around table rows in order to repeat parts of a table.

4. Generators/Preparers : Biosolids or Sewage Sludge Analytical Methods

Arizona regulations specify that representative samples of sewage sludge that is land applied, placed on a surface disposal site, or fired in s sewage sludge incinerator, must be collected and analyzed. These regulations specify the analytical methods that must be used to analyzed samples of sewage sludge.

Parameter	Method Number or Author	Results (if tested)	Comments (required if other)
Pathogens			
Ascaris ova.	No Analytical Method Used	Click here to enter text.	Click here to enter text.
Fecal Coliform	No Analytical Methods Used	Click here to enter text.	Click here to enter text.
Helminth ova.	No Analytical Methods Used	Click here to enter text.	Click here to enter text.
Salmonella sp. Bacteria	No Analytical Methods Used	Click here to enter text.	Click here to enter text.
Total Cultural Viruses	No Analytical Methods Used	Click here to enter text.	Click here to enter text.
Metals			
Arsenic	EPA Method 6010 - Arsenic (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.
Beryllium	Other Beryllium Analytical Method	See attached OCSD Biosolids Management Compliance Report, Appendix C.	EPA Method 6010 - Beryllium
Cadmium	EPA Method 6010 - Cadmium (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.
Chromium	EPA Method 6010 - Chromium (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, appendices A and C.	Click here to enter text.
Copper	EPA Method 6010 - Copper (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.
Lead	EPA Method 6010 - Lead (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.
Mercury	EPA Method 7471 - Mercury (CVAA)	See attached OCSD Biosolids Management Compliance	Click here to enter text.
BIOSOLIDS SEWAGE SLUDGE ANNUAL REPORT

		Report, Appendices A, C, and D.				
Molybdenum	EPA Method 6010 - Molybdenum (ICP- OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.			
Nickel	EPA Method 6010 - Nickel (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.			
Selenium	EPA Method 6010 - Selenium (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.			
Zinc	EPA Method 6010 - Zinc (ICP-OES)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.			
Nitrogen Compounds	5					
Ammonia Nitrogen	Standard Method 4500-NH3 - Ammonia Nitrogen	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.			
Nitrate Nitrogen	Other Nitrate Nitrogen Analytical Method	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	EPA 300.0			
Nitrogen	Standard Method 4500-N - Nitrogen	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.			
Organic Nitrogen	Other Organic Nitrogen Analytical Method	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Calculation			
Total Kjeldahl Nitrogen	EPA Method 351.2 - Total Kjeldahl Nitrogen	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.			
Other Analytes						
Fixed Solids	No Analytical Method Used	Click here to enter text.	Click here to enter text.			
Paint Filter Test	No Analytical Method Used	Click here to enter text.	Click here to enter text.			

BIOSOLIDS SEWAGE SLUDGE ANNUAL REPORT

рН	EPA Method 9045 - pH (> 7% solids)	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.					
Specific Oxygen Uptake Rate	Choose an item.	Click here to enter text.	Click here to enter text.					
TCLP	EPA Method 1311 - Toxicity Characteristic Leaching Procedure	See attached OCSD Biosolids Management Compliance Report, Appendix C.	Click here to enter text.					
Temperature	No Analytical Method Used	See attached OCSD Biosolids Management Compliance Report, Appendix A.	Click here to enter text.					
Total Solids	Standard Method 2540 - Total Solids	See attached OCSD Biosolids Management Compliance Report, Appendices A, C, and D.	Click here to enter text.					
Volatile Solids	Standard Method 2540 - Volatile Solids	See attached OCSD Biosolids Management Compliance Report, Appendix A and D.	Click here to enter text.					
No Analytical Methods Used	Choose an item.	Click here to enter text.	Click here to enter text.					

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY AZPDES Individual Permits Unit 1110 W Washington Street Phoenix, Arizona 85007 (602) 771-4689 (voicemail) (602) 771-4505 (fax) Email to: biosolids@azdeq.gov

5. Land Applicators: Specific information to be completed by Land Applicators Only

Application Site / Location	Field ID	Amount of Biosolids Applied (in dry tons)	Preparer	Pathogen Treatment Method	Vector Attraction Reduction Method	Loading Rate	Nitrogen Conc. (Organic + ammonium)	Type of Crop Grown After Application	Agronomic Rate of Crop Grown	The <u>Cumulative</u> Concentration of Pollutants (kilograms per hectare) in Soil					
Example: ABC Farms, Aztec AZ	IA	350 tons	Aztec WWTP	Class B Alt. 2	Optíon 9	Tons or Kg/acre		Corn							
1. Click here to enter text.	Click here to enter	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	As=Click here to enter text.	Cd=Click here to enter text.	Cr=Click here to enter text.	Cu=Click here to enter text.	Pb=Click here to enter text.	
	text.									Hg=Click here to enter text.	Mo=Click here to enter text.	Ni=Click here to enter text.	Se=Click here to enter text.	Zn=Click here to enter text.	
2. Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	As=Click here to enter text.	Cd=Click here to enter text.	Cr=Click here to enter text.	Cu=Click here to enter text.	Pb=Click here to enter text.	
	lext.									Hg=Click here to enter text.	Mo=Click here to enter text.	Ni=Click here to enter text.	Se=Click here to enter text.	Zn=Click here to enter text.	
	Click here									As=Click here to	Cd=Click here to	Cr= Click here to	Cu=Click here to	Pb=Click here to	

BIOSOLIDS SEWAGE SLUDGE ANNUAL REPORT

3. Click here to enter text.	to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	enter text.	enter text.	enter text.	enter text.	enter text.
										Hg=Click here to enter text.	Mo=Click here to enter text.	Ni=Click here to enter text.	Se=Click here to enter text.	Zn=Click here to enter text.
4. Click here to enter text.	Click here to enter	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	As=Click here to enter text.	Cd=Click here to enter text.	Cr=Click here to enter text.	Cu=Click here to enter text.	Pb=Click here to enter text.
	text.									Hg=Click here to enter text.	Mo=Click here to enter text.	Ni=Click here to enter text.	Se=Click here to enter text.	Zn=Click here to enter text.
5. Click here to enter text.	Click here to enter	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	Click here to enter text.	As=Click here to enter text.	Cd=Click here to enter text.	Cr=Click here to enter text.	Cu=Click here to enter text.	Pb=Click here to enter text.
	text.									Hg=Click here to enter text.	Mo=Click here to enter text.	Ni=Click here to enter text.	Se=Click here to enter text.	Zn=

APPENDIX F

Biosolids Program History

The history of OC San's Biosolids Program is important to understand as we plan for the future. In order to maintain the integrity of this information for future generations, the historical information is maintained in this appendix.

Program History

- In 1971, OC San entered into a long-term contract with Goldenwest Fertilizer Co., Inc., a local fertilizer manufacturer, who hauled and composted the sludge off site. OC San maintained contracts with Goldenwest Fertilizer Co. for several years until the firm lost their land lease for their composting operation in 1979. Contracts with other composting companies were also used during the 1970s.
- In 1978, after notification that their contract with Goldenwest Fertilizer Co. would be ending in 1979, OC San presented a proposal to the County of Orange to co-dispose sludge with municipal solid waste at Orange County landfills. Following approval by Orange County and the California Regional Water Quality Control Board, Santa Ana Region (CRWQCB): OC San established an air drying/composting site at Coyote Canyon landfill. OC San used this site as a sludge-drying operation until 1981 when it was converted to an open-air composting facility. This was done to reduce odors and dry the sludge to the required 50% solids content prior to being blended with municipal solid waste.
- The 50% solids requirement was set by the CRWQCB, by Order No. 79-55. In December 1982, the requirements were modified by Order No. 82-299. The new order reduced the required average solids content to 22.5%. In addition to the solids content requirements, the volume of refuse to sludge incorporated into the landfill was required to be a 10:1 ratio. After the new Order was issued and the treatment plant belt press dewatering system was installed, the air drying process was no longer needed and its operation was discontinued.
- In 1974, OC San began a cooperative regional sludge management study with the City of Los Angeles, the Los Angeles County Sanitation Districts, the Environmental Protection Agency (EPA), and the CRWQCB. By a joint powers agreement, the Regional Wastewater Solids Management Program' for the Los Angeles/Orange County Metropolitan Area (LA/OMA Project) had a separate staff and budget to develop a long-term solids reuse or disposal plan, including an implementation strategy for the Los Angeles/Orange County metropolitan areas. This extensive, six-year, \$4.0 million study, which covered all aspects of sludge processing and disposal, was completed in 1980. The conclusion was that each of the three entities would carry out its own sludge management program. For OC San, land-based disposal and beneficial reuse were the study's preferred alternatives.

However, co-combustion and enclosed mechanical in-vessel composting alternatives at OC San's Reclamation Plant No. 1 were added to OC San's LA/OMA supplemental study when the recommended composting facilities were evaluated as being difficult to site.

- In 1978 and 1983, OC San brought activated sludge facilities online at Plant No. 1 and Plant No. 2 respectively, which led to significant improvements of ocean water quality. By 1984, OC San had replaced centrifuges that dewatered to about 20% with new belt presses at both plants. The new belt presses had to dewater to at least 22.5% in order to meet landfill requirements. As a result, waste activated secondary sludges were dewatered separately and sent to a private landfill. Clean Water Grant Funds aided in the construction of the important facilities improvements at Plant No. 2 including the activated sludge plant (\$45 million) and sludge handling/process facilities (\$30 million).
- In November 1983, OC San's Boards of Directors submitted a new Residual, Solids Management Plan to the EPA. The plan included both short- and longtern compliance strategies. The short-term compliance plan involved the continued practice of trucking 22.5% solids to Coyote Canyon landfill for codisposal with municipal waste until the landfill closed in March 1990. It also included hauling sludge to private landfills using OC San's trucks or private contractors. The long-term plan included co-disposal at county landfills and off-site reuse/management by private contractors.
- In November 1984, OC San approved an interim sludge disposal program due to the limitation of the amount of sludge this could be co-disposed at Coyote Canyon. As part of this program, an agreement was made with BKK Corporation to take the balance of the sludge to the BKK-owned and operated in West Covina (Los Angeles County). This contract expired in late 1991.
- In 1987, OC San began a facilities master planning effort that culminated in July 1989. The 1989 30-year master plan, "2020 Vision," established 11 major objectives for maintaining our excellent record of environmental and public health protection including, "Sludge Reuse: OC San will continue to promote multiple, beneficial reuse alternatives for sludge and strive to increase beneficial reuse from 60% to 100%. We will develop at least one in-county land disposal alternative as a backup to guarantee long-term reliability." The goals are summarized below:
 - Continue discussions with the County of Orange pertaining to landfill ·codisposal options;
 - o Pursue co-disposal options at out-of county landfills;
 - Continue and/or expand use of private contracts to reuse or dispose of sludge;
 - Pursue with Orange County Environmental Management Agency staff the use of sludge as the final cover for Coyote canyon's closure;

- Monitor the status of the proposed co-compost pilot project at Prima Deshecha landfill;
- Initiate a regular status review of OC San management program that would provide centralized information in one location; and
- Hire a full-time sludge manager to coordinate OC San' overall sludge reuse/disposal program (completed in August of 1989).
- The goals noted above led to a series of new recycling options starting in in 1988 using three separate contractors. Two contracts were created with compost contractors, and one was created with an agricultural land fertilization contractor. Using these three contractors, OC San recycled about 50% of their sludge from 1988-1991.
- 1990: About 50% of the sludge is processed into compost by L. Curti Trµck & Equipment and by Recyc; Inc., or applied directly to agricultural land by Pima Gro Systems, Inc. The remaining 50% of the sludge is disposed in the BKK landfill in Los Angeles County. The dewatered sludge is hauled to the landfill and directly incorporated with municipal solid waste in conformance with operating requirements of the Regional Water Quality Control Board, Los Angeles.

Prior to March of 1990, landfill co-disposal was available at the Coyote Canyon landfill in Orange County and the BKK landfill. During this period 14% of the Districts' sludge went to Coyote Canyon and 36% went to BKK.

- On June 24, 1991 a new solids handling storage facility (truck loading) was placed in service. Plant No. 1 Belt Press Dewatering Building M was placed in service in February 1983. Belt Press Dewatering Building C was placed in service in October 1988. By 2018, the belt presses will be replaced by centrifuges, the DAFTs will be replaced by thickening centrifuges, and truck loading will be rehabilitated.
- Beginning in Beginning in November 1991, the Districts' Biosolids Management Program achieved a milestone of 100% beneficial reuse. Beneficial reuse allows the Districts to lower its management costs and eliminate the need to take up valuable landfill space. The program consisted of compost, direct land application, and a standby agreement to landfill the biosolids in the event of an emergency. Further benefits of switching to beneficial reuse was been a reduction in disposal costs. Beneficial reuse costed the Districts less than landfilling and was expected to become even more cost effective in the future as the market for compost material grows. About 73% of the biosolids are processed into compost by Pima Gro Systems, Inc. at the Riverside Recyc compost facility. The remaining 23% is applied directly to agricultural land by Ag Tech Company in Yuma, Arizona.
- During 1993-94, only one biosolids contractor was used to haul and manage the OC San's biosolids produced by Plant No. 1. Pima Gro Systems, Inc.

hauled the biosolids to the Recyc processing site in Riverside County where it was composted. The biosolids based compost was then sold to nearby farmers as a nutrient rich soil amendment and fertilizer.

- In late 1994, the Ag Tech Company was contracted to use OC San biosolids to enhance agricultural soils, reduce the amount of irrigation water needed, and provide a much needed source of organic humus. The biosolids were injected 6 inches to 15 inches beneath the surface (in the root zone) within hours of their arrival to permitted farm lands.
- In June 1995, Bio Gro, a division of Wheelabrator Clean Water Systems, Inc., was added as a biosolids contractor. Biosolids were recycled on agricultural land in Riverside County. Pima Gro used commercial fertilizer spreaders to distribute the biosolids prior to incorporation on agricultural land in Kern County, California.
- In March 1996, Tule Ranch was added as a biosolids contractor. Pima Gro was still recycling biosolids in Kern County, California, and Bio Gro was recycling biosolids in Riverside. No composting was reported.
- In 1997, continued 100% beneficial reuse with all biosolids recycled via direct land application in Kern, Riverside, and San Diego counties.

The Districts also entered into a one-year pilot project contract with Waste Conversion Industries, Inc. (WCI) to chemically treat and heat dry the Districts' biosolids at their Corona, California site. Due to mechanical difficulties, WCI was not able to process any of the Districts' biosolids.

During fiscal year 1996-97, the Districts' biosolids management cost was reduced by approximately \$1 million from that of fiscal year 1995-96. New and amended biosolids management contracts as well increased efficiency in the Districts' belt operation contributed to the decrease in biosolids management costs. Upon the expiration of the Ag Tech contract and the termination of the Hondo contract, the Districts maintained only two active biosolids management contractors, Bio Gro and Pima Gro. In August 1996, having only two active biosolids management contractors, and receiving numerous unsolicited lower cost biosolids management proposals Districts' staff prepared and issued a Request for Proposals for Biosolids Management (RFP). The RFP was necessary in order to increase biosolids management diversity and reliability while decreasing costs. Eight biosolids management firms submitted proposals. Bio Gro proposed to maintain their existing contract, but unilaterally offered a pricing amendment, while Pima Gro submitted a new proposal that provided the Districts with the option of accepting the entire proposal or modify the pricing structure of the existing contract.

After extensive review and ranking of the proposals by staff, new contracts were offered to Tule Ranch and Waste Conversion Industries, Inc., while Bio Gro's and Pima Gro's existing contracts were amended to reflect their new price schedules.

- In 1998 through 2000, continued 100% beneficial reuse with all biosolids recycled via direct land application in Kern, Kings, San Diego and Riverside counties. Pima Gro, Bio Gro, and Tule Ranch were OC San's biosolids contractors. Small amounts of biosolids were composted at Pimo Gro's Riverside composting facility, Bio Gro's Arizona Soils facility in La Paz County, Arizona, and by Pima Gro for a UCR Extension research project in Imperial County.
- In June 2000, OC San purchased 1,800 acres of Tule Ranch's farm in Kings County, California, to provide a reliable, long-term site for treatment and land application of biosolids. Tule Ranch contracted to manage OC San's biosolids its farm at a reduced cost per ton.
- In 2001, Synagro purchased Pima Gro and Bio Gro, and OC San added Yakima as a contractor. One-hundred percent beneficial reuse via direct land application in Kern, Kings, San Diego, and Riverside. Synagro also recycled biosolids to tribal land farms in San Bernardino County, California. Small amounts were composted in Riverside and tribal land.

In 2001, Riverside County issued an ordinance that banned the use of Class B biosolids for land application but allowed limited use of Class A biosolids. In 2003, the restrictions were expanded to address nuisance problems related to Class A biosolids. Kern County's Class A requirement (Class B ban) went into effect in early 2002, and King's County followed in 2003 with only composted biosolids allowed after 2006.

- In 2002, as staff began work on a large-scale long-range biosolids management plan and contentious local county Class B land application bans were on the rise, OC San began increasing diversification away from land application and added more composting in Riverside County. Biosolids were also recycled on Fort Mohave tribal land in Mohave County, Arizona and Clark County, Nevada.
- October 28, 2002 Yakima Co. began operations at their new biosolids management site in La Paz County, Arizona. The operation involved biosolids air drying to achieve material greater than 50% total solids and use as alternative daily cover at La Paz Landfill. A total of 4,628.09 wet tons (881.7 dry metric tons) of biosolids were managed through this process through 2002. This amount represents about 2% of the total District's biosolids material beneficially reused in land application operations during 2002. The District discontinued its use of the Yakima Co. for management of its biosolids in early January 2003. The facility was later shut-down by the County of La

Paz and a lawsuit was won against the County by Yakima for \$9.2 million in damages.

- In 2002, OC San's Board of Directors voted to increase the level of treatment to full-secondary treatment requirements, which produced significantly more biosolids, especially between 2002 to 2005, until the new dewatering centrifuges could be constructed and implemented at each plant (2018-2020). OC San's focus through the 2000's was on building the water-side capital facilities to meet this increased level of service.
- In 2003, OC San continued to encourage contractors to diversify its biosolids options, especially in Arizona and Nevada. OC San started using Arizona Soils in La Paz County, Arizona on a regular basis. OC San additionally piloted Tule Ranch's subcontractor, Universal, to utilize farms in Wellton and Dateland, Arizona for land application of about 6% of OC San's biosolids. Tule Ranch's Class A lime stabilization process was started in order to continue recycling biosolids in Kern and Kings Counties. A small amount of biosolids was used in Maricopa County, Arizona.

In addition, OC San started using Solid Solutions to recycle biosolids in Nye County, Nevada to further diversify the biosolids management program. Solid Solutions was a subcontractor to California Soils Products who had a 2002 contract with OC San to render biosolids into a treated soil product.

By March 2004, OC San ceased operation in Nye County because of a hearing with complaints from affected neighbors, local competition with dairy manure, and a letter from Nevada congressional representative, Harry Reid, whose brother was a local resident. This episode also captured the attention of the 2003-04 Orange County Grand Jury who performed an investigative study and published a report: http://www.ocgrandjury.org/pdfs/biosolids.pdf.

OC San concluded its use of Solid Solutions in 2005 when it was clear that the Soil Products facility would not materialize.

- In December 2003, OC San finalized a Long Range Biosolids Management Plan that set forth the following recommendations to ensure a sustainable biosolids management program. These recommendations were implemented over the following decade.
 - Maintain at least three different product-manufacturing options at any given time.
 - Optimize capital and operations and maintenance (O&M) costs at OC San's treatment plants as part of implementation of the long-range plan.
 - Limit maximum participation for any market to one-half of the total biosolids production.

- Limit biosolids management contracts to a maximum of one-third of total biosolids production per merchant facility, and one-half per contractor (for contractors with multiple product manufacturing facilities).
- For each OC San-owned product manufacturing facility, limit the size to one-half of the total biosolids production.
- Explore funding options for in-county facilities (private capital, OC San capital, or both).
- Allocate up to 10 percent of biosolids for participation in emerging markets.
- Pursue Orange County-based product manufacturing facilities and maximize the use of horticultural products within the OC San service area by member agencies and through developing public-private partnerships.
- Maintain capacity and options at OC San's Central Valley Ranch.
- Pursue failsafe backup options (landfilling, alternative daily cover for landfills, and dedicated landfilling) to acquire a 100 percent contingency capacity.
- From November 1991 through December 2004, OC San achieved 100 percent beneficial reuse of its biosolids mostly through the use of land application with some composting.
- In 2004, OC San started ramping up the land application in Arizona through Tule Ranch's Dateland operation, from about 10% in 2003 to 20% in 2004. OC San also ramped up it's use of compost sites in California and Arizona from about 7% in 2003 to 20% in 2004.
- In January 2005 and 2006, OC San sent a small fraction of its biosolids to two landfills in Arizona (Copper Mountain and South Yuma County Landfill) in order to increase the diversity of its biosolids management options, as well as address the operational needs caused by wet weather periods. The routes to these two landfills were not impacted by severe weather.
- Starting in 2006, Synagro eliminated their last remaining OC San land application (Maricopa County), as fuel prices hit record highs, and focused on composting services.

On December 27, 2006, Synagro's new composting facility (South Kern Compost Manufacturing Facility) came online. This was the first long-term contract to become operational as an outcome of the 2003 Long-Range Biosolids Management Plan.

 In 2007, with OC San's contract that guaranteed at least 250 tons per day to Synagro's new facility, OC San's biosolids allocation to compost facilities expanded to its current level of about 50% of its total biosolids production. These facilities have extensive permitting and regulatory oversight and reporting, improved public outreach with neighbors and local communities, and have more air quality and odor process controls. Today's framework is more sophisticated than what was in place two decades ago.

Land application was also allocated about 50% of OC San's portfolio with half of that as lime-stabilized Class A in Kern County and half as Class B in Yuma County, Arizona.

- In March 2007, OC San stopped actively using landfills and maintained this option only as a failsafe backup. OC San re-gained its **100 percent recycling performance from 2008 through 2012** (excluding some digester cleanings).
- In August 2007, the Orange County Water District's (OCWD) Advanced Water Purification Facility, later called the Ground Water Replenishment System (GWRS), started taking an average of 30 MGD of Plant No. 1's secondary treated water to test their facility in purifying the water to meet drinking water standards. OCWD uses microfiltration and reverse osmosis. The water is used as a barrier for salt water intrusion and to recharge groundwater basins starting in January 2008. About 100 MGD of OC San's secondary effluent produced about 70 MGD of purified water for reuse. Secondary effluent not sent to OC San is sent as usual to Plant No. 2 to blend with treated wastewater from Plant No. 2 prior to ocean discharge through OC San's 120-inch, 5-mile outfall. In 2015, an additional 20 MGD of influent sewage was diverted from Plant No. 2 to Plant No. 1 to support the GWRS expansion. GWRS purifies OC San's secondary treated water from Plant No. 1 to meet drinking water standards. OC San provides GWRS about 120 MGD of secondary effluent to produce purified water for reuse.
- In October 2008, Synagro's Regional Compost Facility in Riverside County stopped receiving OC San biosolids in order to prepare for the site's closure. The facility's conditional use permit was not renewed by the County of Riverside after homes were developed nearby and residents filed hundreds of odors complaints.
- In late 2008, OC San stopped using Tule Ranch's Kern County. This change in strategy culminated when the EnerTech facility started commissioning their process and Kern County required additional costly environmental studies to continue utilizing that option. OC San's Kings County property was sold in December 2011.
- As part of the 2003 Long Range Biosolids Management Plan implementation, OC San issued a series of request for proposals in 2004. As a result, EnerTech Environmental, Inc. was awarded a 225-ton guaranteed-minimum contract in 2005, which was signed in May 2006. The Rialto facility was constructed and began commissioning on November 3, 2008. OC San reallocated Tule Ranch's Kern County land application loads to EnerTech to meet contractual obligations. EnerTech's patented technology used heat and pressure to convert biosolids to a certified renewable energy pellet (E-fuel) that was burned as a replacement for coal in local cement kilns. EnerTech encountered a series of technical and permitting setbacks during the

commissioning process. During the start-up process, biosolids not processed at the Rialto facility were land-applied in Yuma County, Arizona by Terra Renewal (formerly Solid Solutions).

In November 2010, EnerTech began implementation of a Single Train Technical Plan that was anticipated to address the issues and finish the commissioning process by March 2012. After a final extension and failure to meet contractual performance requirements, OC San terminated its contract with EnerTech effective July 2012. OC San re-allocated the EnerTech loads to our two remaining contractors, Synagro (composting) and Tule Ranch (land application), at about 50% each.

- March 2009, OC San began diverted settled sludge from Plant No. 1's primary clarifiers, along with about 2.5 MGD of belt press dewatering filtrate, to Plant No. 2's headworks, where they are mixed with the influent wastewater. OC San built a new pump station at Plant No. 1, the Steve Anderson Lift Station, on order to bring more flow into Plant No. 1 to provide more flows to GWRS. However, the additional flows produced more solids than Plant No. 1 was equipped to handle during rehabilitation of its digesters and construction of its thickening and dewatering centrifuges, making the diversion of these solids to Plant No. 2 necessary. The routine diversion of primary sludge was ceased by June 2019 as part of the commissioning of the new sludge thickening and dewatering facility (P1-101) at Plant No. 1. OC San continues to divert the cationic polymers contained in the thickening and dewatering filtrate to protect GWRS from these constituents of concern.
- In March 2010, OC San sent a demonstration load to the City of Los Angeles Terminal Island Renewable Energy (TIRE) project via OC San's contract with Tule Ranch. OC San material was not compatible with their facility because the material required more screening than the City's biosolids.
- In April 2010, Tule Ranch permanently moved their land application operations from Dateland, AZ to Yuma, AZ.
- In January 2011, Tule Ranch formed an agreement with AgTech and managed OC San biosolids at two sites (Desert Ridge and AgTech) in Yuma. The following year, Tule Ranch purchased the AgTech operations and integrated the two operations. Tule Ranch has continued land applying at both Yuma sites.
- In 2012, OC San met the new NPDES ocean discharge permit's treatment requirements for secondary treatment standards. With full secondary treatment facilities operational, the focus is now on asset rehabilitation, including solids treatment facilities. The Capital Improvement Program Annual Report (<u>www.ocsd.com/CIPAnnual</u>) summarizes the projects and their progress.

- In February and March 2012, OC San's Plant No. 2 biosolids exceeded the Arsenic Table 3 Exceptional Quality Limit for fields 23110121, 2311013, 2311021, and 2311022, but were below Table 1 Ceiling Concentrations. OC San's land application contractor, Tule Ranch, already reports Table 2 Cumulative Pollutant Loading Rates for all pollutants and all fields as part of their annual report to the Arizona Department of Environmental Quality.
- As directed by the Board's November 2011 Strategic Plan direction, OC San executed an agreement with Orange County Waste and Recycling (OCWR) to manage up to100 tons per day of OC San's biosolids at the Prima Deshecha landfill located in the city of San Juan Capistrano, California. This alternative provides OC San a local biosolids management option during projected peak biosolids production period until 2017.

As a result of the landfill start-up in 2013, OC San is recycling about 94-97% of its biosolids, with the remaining biosolids going to the OCWR landfill. Landfill loads do not count towards recycling despite the indirect energy production from capturing methane onsite. OC San sends the landfill about 1 truck per day of grit and screenings (non-recyclable material) and 3 trucks of biosolids per day (5 days per week when not impacted by rain) in order to keep some revenues and resources in-County (see also OC San Biosolids Policy Board Resolution 13-03: <u>ocsd.com/bios-policy</u>.

However, after residential complaints in late 2016, biosolids loads to the landfill were on hiatus until operations moved further away from the phase of the housing development that opened in Fall of 2016. With the heavy rains received December through February 2017, the landfill was operating in a different section, and OC San remained on hiatus. In February 2017, OC San received direction to cease disposal of biosolids to the landfill. The amount of biosolids landfilled impacted the city of Fountain Valley, which is one of OC San member agency. The City is required by CalRecycle to divert 50% of its solids waste from the landfill. Since OC San is located in the city of Fountain Valley (host city), the tonnage of biosolids being landfilled counted against the city's solids waste diversion goal of 50% diversion. In response, OC San stop hauling biosolids to landfill for disposal.

- In November 2016, the Kern Measure E (2006) biosolids ban was struck down. A Tulare County Superior Court judge ruled that Kern County Measure E is invalid and unlawful. The Judge found that Measure E, the ordinance banning land application of biosolids in the unincorporated areas of the county, is preempted by state recycling laws and exceeded Kern's police powers. The judge granted a permanent injunction against enforcing Measure E. In September 2017, parties signed a settlement agreement allowing the City of Los Angeles to continue to land apply biosolids.
- In May 2017, OC San completed a comprehensive Biosolids Master Plan (<u>ocsd.com/BMP</u>) that is providing a long-term framework for a sustainable,

cost-effective biosolids management program. The Plan recommended building temperature-phased anaerobic digesters at Plant No. 2 to address seismic issues with existing digesters while creating an essentially pathogenfree biosolids product. In addition, OC San will install a food waste receiving station at Plant No. 2. The food waste facility will support state and local organics recycling goals including diverting 50% of landfill-bound organic materials (carbon-based recyclables including biosolids) by 2020 and 75% by 2025. Food waste will be co-digested to create more gas and electricity, as well as a few additional biosolids trucks. The interim food waste facility is expected to be online in 2021, and the new digestion complex is expected to start-up in 2030.

The Master Plan also reviewed and updated the former program guiding principles. and formalized an updated set as the <u>"Ten Tenets of OC San's Biosolids Management Plan."</u> See the report text for a list of the tenets and OC San's performance relative to them.

- In 2017, Project P1-100 was completed. This project cleaned and rehabilitated each of the Plant No. 1 digesters. Routine maintenance is now targeting to cleaning digesters every five years. To that end, OC San issued a new dry-ton based bid (previous bids based on gallons) that was awarded to Synagro to clean digesters at both plants. The first 5-year cleaning was performed on Digester 7 in 2017.
- In 2017, OC San established a biosolids compost demonstration planter at Plant No. 2 as part of an existing landscaping project. The planter uses the same native plants as nearby control planters that didn't use biosolids. Five and ten percent biosolids compost were amended into the soil. The landscape architects and soil laboratories did not want to use biosolids compost because of the salinity analyses, so OC San intends this demonstration will show the assimilative capacity of biosolids that is not reflected in the laboratory analysis. If successful, this demonstration will also show that the plants survive and thrive when the laboratory analyses counterindicate biosolids because the analyses do not necessarily directly correlate to the actual field performance, and because biosolids is a more complicated blend of compounds that allow assimilative bonds that have remediating effects.
- Upon ceasing the use of the local landfill in late 2016, OC San has subsequently achieved **100% beneficial recycling of all biosolids**, including digester cleanings.
- Between 2017 and 2019, OC San cleaned a record of twenty (20) digesters using maintenance contracts. The contract is expected to be renewed and clean more digesters in 2019-2020:
 - Plant No. 1 Digesters 5, 6, 7, 8, (partially 9).

- Plant No. 2 Digesters C, E, F, G, H, J, I, L, M, N, O, P, R, S, and T.
- In 2019, OC San finished commissioning new dewatering centrifuge facilities that replaced the dewatering belt filter presses at Plant No. 1 and at Plant No. 2. The total percent solids of dewatered biosolids increased significantly in 2019, resulting in approximately 25% less biosolids (wet weight) and trucks to manage (see Figure 1 below). The Plant No. 1 project also installed predigestion centrifuges to thicken primary and secondary solids, so the existing dissolved air floatation thickening units are no longer in use. Additionally, Plant No. 1 truck loading facility was rehabilitated. With the commissioning of the centrifuges, the biosolids averaged about 24% total solids at Plant No. 1 and 27% total solids at Plant No. 2. More detailed data, including monthly averages, annual totals and analytical results, can be viewed in Figure 1 below, as well as in the Report body and Appendices A, B, C, and D.
- The Irvine Ranch Water District (IRWD) historically discharged its untreated solids (sludge) to OC San. IRWD is completing commissioning its new solids treatment facility and have been ramping down the volume of solids discharged to OC San as the new facilities are coming online. OC San saw a reduction in biosolids at the end of the year and anticipate an addition reduction in early 2021 when the facilities are fully commissioned.
- In 2020, a pandemic contingency hauling plan was added into the Biosolids Section of the Integrated Emergency Response Plan in the case that COVID-19 impacted haulers.
- OC San issued a request for proposals for digester cleaning maintenance in June 2020 and awarded the multi-year contract to American Processing Group (APG) in October 2020. APG will be begin cleaning digesters in January 2021. Some of this material will be sent to a landfill.
- In November 2019, OC San's Board of Directors approved the 2019 Strategic Plan that includes **Biosolids Management Policy initiatives** to educate and advocate with the local, state, and federal agencies to assure biosolids will continue to be safely and legally used as a soil amendment and to monitor and research constituents of emerging concern such as PFAS and microplastics that may impact biosolids. In addition, OC San will stay abreast of new technology options to convert organics to energy and other regional biosolids recycling and renewable energy partnerships within Southern California.
- Biosolids Management Policy Initiative Biosolids Thermal Conversion: In support of the 2017 Biosolids Master Plan and as directed by the 2019 Strategic Plan, a request for information (RFI) was issued for biosolids thermal conversion technologies in April 2020. This process continues into 2021 with contract negotiations to potentially add a pilot

pyrolysis and PFAS-reduction demonstration facility as a biosolids management option.

- Food Waste Treatment Policy Initiative: As part of the implementation of the 2017 Biosolids Master Plan, 2019 Strategic Plan, and as part of the General Manager's Work Plan goal for Fiscal Year 2020-21, OC San is conducting a market assessment of available food waste feedstock for codigestion and securing bids to construct P2-124 "Interim Food Waste Receiving Facility" at Plant No. 2. Several prospective municipal solid waste haulers have expressed interest in providing food waste feedstock, which OC San is currently evaluating. Bid opening for P2-124, Interim Food Waste Receiving Facility was in January 2021, and bid selection is in progress. This project is designed to receive approximately 150 wet tons of pre-processed food waste to be co-digested in OC San's anaerobic digesters at Plant No. 2. The added organic feedstock will account for about a 10% increase of biogas production that will be used to generate electricity.
- OC San's Research Program continues to stay abreast of advanced technologies. Participation in the International Technology Advisory Group (iTAG) is an integral part of OC San's Research Program. The iTAG screens and evaluates potential beneficial technologies for the wastewater industry. Annually, OC San hosts the iTAG and invites other wastewater treatment agencies to learn of the most promising technologies at which time agencies may choose to pilot. OC San continues to stay current in biosolids and energy recovery technologies through this process.
- OC San's Awards and Honors (<u>ocsd.com/about-us/awards-and-honors</u>) webpage features many 2020 awards, including:
 - National Association of Clean Water Agencies (NACWA) Platinum Award and Gold Excellence in Management Recognition,
 - Utility of the Future Today Award from the Water Environment Federation for OC San efforts in energy generation and recovery, and
 - Grand prize from the American Academy of Environmental Engineers and Scientists for the Climate Resiliency and Adaptation Plan.
- In 2020, Tule Ranch-Ag Tech expanded their registered permitted fields to include the entire Desert Ridge site.

 $\label{eq:loss} with the loss (loss (los) (los) (loss (loss (los) (los (los) (loss (los) (los)$

This page left intentionally blank.

Laboratory, Monitoring & Compliance Division 10844 Ellis Avenue Fountain Valley, California 92708-7018 714.962.2411

www.ossan.gov